Multiplication of a value of type
Function:
(defun mul-slong-slong (x y) (declare (xargs :guard (and (slongp x) (slongp y) (mul-slong-slong-okp x y)))) (slong-from-integer (* (integer-from-slong x) (integer-from-slong y))))
Theorem:
(defthm slongp-of-mul-slong-slong (slongp (mul-slong-slong x y)))
Theorem:
(defthm mul-slong-slong-of-slong-fix-x (equal (mul-slong-slong (slong-fix x) y) (mul-slong-slong x y)))
Theorem:
(defthm mul-slong-slong-slong-equiv-congruence-on-x (implies (slong-equiv x x-equiv) (equal (mul-slong-slong x y) (mul-slong-slong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm mul-slong-slong-of-slong-fix-y (equal (mul-slong-slong x (slong-fix y)) (mul-slong-slong x y)))
Theorem:
(defthm mul-slong-slong-slong-equiv-congruence-on-y (implies (slong-equiv y y-equiv) (equal (mul-slong-slong x y) (mul-slong-slong x y-equiv))) :rule-classes :congruence)