Multiplication of a value of type
Function:
(defun mul-ulong-ulong (x y) (declare (xargs :guard (and (ulongp x) (ulongp y)))) (ulong-from-integer-mod (* (integer-from-ulong x) (integer-from-ulong y))))
Theorem:
(defthm ulongp-of-mul-ulong-ulong (ulongp (mul-ulong-ulong x y)))
Theorem:
(defthm mul-ulong-ulong-of-ulong-fix-x (equal (mul-ulong-ulong (ulong-fix x) y) (mul-ulong-ulong x y)))
Theorem:
(defthm mul-ulong-ulong-ulong-equiv-congruence-on-x (implies (ulong-equiv x x-equiv) (equal (mul-ulong-ulong x y) (mul-ulong-ulong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm mul-ulong-ulong-of-ulong-fix-y (equal (mul-ulong-ulong x (ulong-fix y)) (mul-ulong-ulong x y)))
Theorem:
(defthm mul-ulong-ulong-ulong-equiv-congruence-on-y (implies (ulong-equiv y y-equiv) (equal (mul-ulong-ulong x y) (mul-ulong-ulong x y-equiv))) :rule-classes :congruence)