Check if the remainder of a value of type
Function:
(defun rem-schar-sllong-okp (x y) (declare (xargs :guard (and (scharp x) (sllongp y)))) (rem-sllong-sllong-okp (sllong-from-schar x) y))
Theorem:
(defthm booleanp-of-rem-schar-sllong-okp (booleanp (rem-schar-sllong-okp x y)))
Theorem:
(defthm rem-schar-sllong-okp-of-schar-fix-x (equal (rem-schar-sllong-okp (schar-fix x) y) (rem-schar-sllong-okp x y)))
Theorem:
(defthm rem-schar-sllong-okp-schar-equiv-congruence-on-x (implies (schar-equiv x x-equiv) (equal (rem-schar-sllong-okp x y) (rem-schar-sllong-okp x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm rem-schar-sllong-okp-of-sllong-fix-y (equal (rem-schar-sllong-okp x (sllong-fix y)) (rem-schar-sllong-okp x y)))
Theorem:
(defthm rem-schar-sllong-okp-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (rem-schar-sllong-okp x y) (rem-schar-sllong-okp x y-equiv))) :rule-classes :congruence)