Remainder of a value of type
Function:
(defun rem-sint-ulong (x y) (declare (xargs :guard (and (sintp x) (ulongp y) (rem-sint-ulong-okp x y)))) (rem-ulong-ulong (ulong-from-sint x) y))
Theorem:
(defthm ulongp-of-rem-sint-ulong (ulongp (rem-sint-ulong x y)))
Theorem:
(defthm rem-sint-ulong-of-sint-fix-x (equal (rem-sint-ulong (sint-fix x) y) (rem-sint-ulong x y)))
Theorem:
(defthm rem-sint-ulong-sint-equiv-congruence-on-x (implies (sint-equiv x x-equiv) (equal (rem-sint-ulong x y) (rem-sint-ulong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm rem-sint-ulong-of-ulong-fix-y (equal (rem-sint-ulong x (ulong-fix y)) (rem-sint-ulong x y)))
Theorem:
(defthm rem-sint-ulong-ulong-equiv-congruence-on-y (implies (ulong-equiv y y-equiv) (equal (rem-sint-ulong x y) (rem-sint-ulong x y-equiv))) :rule-classes :congruence)