Remainder of a value of type
Function:
(defun rem-sllong-sllong (x y) (declare (xargs :guard (and (sllongp x) (sllongp y) (rem-sllong-sllong-okp x y)))) (sllong-from-integer (rem (integer-from-sllong x) (integer-from-sllong y))))
Theorem:
(defthm sllongp-of-rem-sllong-sllong (sllongp (rem-sllong-sllong x y)))
Theorem:
(defthm rem-sllong-sllong-of-sllong-fix-x (equal (rem-sllong-sllong (sllong-fix x) y) (rem-sllong-sllong x y)))
Theorem:
(defthm rem-sllong-sllong-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (rem-sllong-sllong x y) (rem-sllong-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm rem-sllong-sllong-of-sllong-fix-y (equal (rem-sllong-sllong x (sllong-fix y)) (rem-sllong-sllong x y)))
Theorem:
(defthm rem-sllong-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (rem-sllong-sllong x y) (rem-sllong-sllong x y-equiv))) :rule-classes :congruence)