Check if the right shift of a value of type
Function:
(defun shr-uint-sllong-okp (x y) (declare (xargs :guard (and (uintp x) (sllongp y)))) (shr-uint-okp x (integer-from-sllong y)))
Theorem:
(defthm booleanp-of-shr-uint-sllong-okp (booleanp (shr-uint-sllong-okp x y)))
Theorem:
(defthm shr-uint-sllong-okp-of-uint-fix-x (equal (shr-uint-sllong-okp (uint-fix x) y) (shr-uint-sllong-okp x y)))
Theorem:
(defthm shr-uint-sllong-okp-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (shr-uint-sllong-okp x y) (shr-uint-sllong-okp x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm shr-uint-sllong-okp-of-sllong-fix-y (equal (shr-uint-sllong-okp x (sllong-fix y)) (shr-uint-sllong-okp x y)))
Theorem:
(defthm shr-uint-sllong-okp-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (shr-uint-sllong-okp x y) (shr-uint-sllong-okp x y-equiv))) :rule-classes :congruence)