Subtraction of a value of type
Function:
(defun sub-sllong-uchar (x y) (declare (xargs :guard (and (sllongp x) (ucharp y) (sub-sllong-uchar-okp x y)))) (sub-sllong-sllong x (sllong-from-uchar y)))
Theorem:
(defthm sllongp-of-sub-sllong-uchar (sllongp (sub-sllong-uchar x y)))
Theorem:
(defthm sub-sllong-uchar-of-sllong-fix-x (equal (sub-sllong-uchar (sllong-fix x) y) (sub-sllong-uchar x y)))
Theorem:
(defthm sub-sllong-uchar-sllong-equiv-congruence-on-x (implies (sllong-equiv x x-equiv) (equal (sub-sllong-uchar x y) (sub-sllong-uchar x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sub-sllong-uchar-of-uchar-fix-y (equal (sub-sllong-uchar x (uchar-fix y)) (sub-sllong-uchar x y)))
Theorem:
(defthm sub-sllong-uchar-uchar-equiv-congruence-on-y (implies (uchar-equiv y y-equiv) (equal (sub-sllong-uchar x y) (sub-sllong-uchar x y-equiv))) :rule-classes :congruence)