Get the
Function:
(defun point-finite->y (p) (declare (xargs :guard (pointp p))) (declare (xargs :guard (equal (point-kind p) :finite))) (let ((acl2::__function__ 'point-finite->y)) (declare (ignorable acl2::__function__)) (b* ((p (mbe :logic (point-fix p) :exec p))) (if (consp p) (cdr p) 0))))
Theorem:
(defthm natp-of-point-finite->y (b* ((y (point-finite->y p))) (natp y)) :rule-classes :rewrite)
Theorem:
(defthm point-finite->y-of-point-fix-p (equal (point-finite->y (point-fix p)) (point-finite->y p)))
Theorem:
(defthm point-finite->y-point-equiv-congruence-on-p (implies (point-equiv p p-equiv) (equal (point-finite->y p) (point-finite->y p-equiv))) :rule-classes :congruence)