(aabf-unary-minus-s x man) → (mv ms new-man)
Function:
(defun aabf-unary-minus-s (x man) (declare (xargs :guard (true-listp x))) (declare (xargs :guard (and (aabflist-p x man)))) (let ((__function__ 'aabf-unary-minus-s)) (declare (ignorable __function__)) (aabf-nest (aabf-+-ss (aabf-true) nil (aabf-lognot-s x)) man)))
Theorem:
(defthm trivial-theorem-about-aabf-unary-minus-s (b* nil (b* ((?ignore (aabf-unary-minus-s x man))) t)) :rule-classes nil)
Theorem:
(defthm true-listp-of-aabf-unary-minus-s.ms (b* (((mv ?ms ?new-man) (aabf-unary-minus-s x man))) (true-listp ms)) :rule-classes :type-prescription)
Theorem:
(defthm aabf-extension-p-of-aabf-unary-minus-s (b* (((mv ?ms ?new-man) (aabf-unary-minus-s x man))) (aabf-extension-p new-man man)))
Theorem:
(defthm aabf-p-of-aabf-unary-minus-s (b* (((mv ms new-man) (aabf-unary-minus-s x man))) (implies (and (aabflist-p x man)) (and (aabflist-p ms new-man)))))
Theorem:
(defthm aabf-eval-of-aabf-unary-minus-s (b* (((mv ms new-man) (aabf-unary-minus-s x man))) (implies (and (aabflist-p x man)) (and (equal (bools->int (aabflist-eval ms env new-man)) (- (bools->int (aabflist-eval x env man))))))))
Theorem:
(defthm aabf-pred-of-aabf-unary-minus-s (b* (((mv ms new-man) (aabf-unary-minus-s x man))) (implies (and (aabflist-p x man) (aabflist-pred x man)) (and (aabflist-pred ms new-man)))))