(aabf-<-ss a b man) → (mv a<b new-man)
Function:
(defun aabf-<-ss (a b man) (declare (xargs :guard (and (true-listp a) (true-listp b)))) (declare (xargs :guard (and (aabflist-p a man) (aabflist-p b man)))) (let ((__function__ 'aabf-<-ss)) (declare (ignorable __function__)) (b* (((when (aabf-syntactically-zero-p b)) (mv (aabf-sign-s a) man)) ((mv head1 tail1 end1) (aabf-first/rest/end a)) ((mv head2 tail2 end2) (aabf-first/rest/end b)) ((when (and* end1 end2)) (aabf-nest (aabf-and head1 (aabf-not head2)) man)) ((mv rst< rst= man) (aabf-<-=-ss tail1 tail2 man))) (aabf-nest (or rst< (and rst= head2 (aabf-not head1))) man))))
Theorem:
(defthm trivial-theorem-about-aabf-<-ss (b* nil (b* ((?ignore (aabf-<-ss a b man))) t)) :rule-classes nil)
Theorem:
(defthm aabf-extension-p-of-aabf-<-ss (b* (((mv ?a<b ?new-man) (aabf-<-ss a b man))) (aabf-extension-p new-man man)))
Theorem:
(defthm aabf-p-of-aabf-<-ss (b* (((mv a<b new-man) (aabf-<-ss a b man))) (implies (and (aabflist-p a man) (aabflist-p b man)) (and (aabf-p a<b new-man)))))
Theorem:
(defthm aabf-eval-of-aabf-<-ss (b* (((mv a<b new-man) (aabf-<-ss a b man))) (implies (and (aabflist-p a man) (aabflist-p b man)) (and (equal (aabf-eval a<b env new-man) (< (bools->int (aabflist-eval a env man)) (bools->int (aabflist-eval b env man))))))))
Theorem:
(defthm aabf-pred-of-aabf-<-ss (b* (((mv a<b new-man) (aabf-<-ss a b man))) (implies (and (aabflist-p a man) (aabflist-p b man) (aabflist-pred a man) (aabflist-pred b man)) (and (aabf-pred a<b new-man)))))