Fixing function for interp-flags bit structures.
(interp-flags-fix x) → fty::fixed
Function:
(defun interp-flags-fix (x) (declare (xargs :guard (interp-flags-p x))) (let ((__function__ 'interp-flags-fix)) (declare (ignorable __function__)) (mbe :logic (loghead 6 x) :exec x)))
Theorem:
(defthm interp-flags-p-of-interp-flags-fix (b* ((fty::fixed (interp-flags-fix x))) (interp-flags-p fty::fixed)) :rule-classes :rewrite)
Theorem:
(defthm interp-flags-fix-when-interp-flags-p (implies (interp-flags-p x) (equal (interp-flags-fix x) x)))
Function:
(defun interp-flags-equiv$inline (x y) (declare (xargs :guard (and (interp-flags-p x) (interp-flags-p y)))) (equal (interp-flags-fix x) (interp-flags-fix y)))
Theorem:
(defthm interp-flags-equiv-is-an-equivalence (and (booleanp (interp-flags-equiv x y)) (interp-flags-equiv x x) (implies (interp-flags-equiv x y) (interp-flags-equiv y x)) (implies (and (interp-flags-equiv x y) (interp-flags-equiv y z)) (interp-flags-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm interp-flags-equiv-implies-equal-interp-flags-fix-1 (implies (interp-flags-equiv x x-equiv) (equal (interp-flags-fix x) (interp-flags-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm interp-flags-fix-under-interp-flags-equiv (interp-flags-equiv (interp-flags-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm interp-flags-fix-of-interp-flags-fix-x (equal (interp-flags-fix (interp-flags-fix x)) (interp-flags-fix x)))
Theorem:
(defthm interp-flags-fix-interp-flags-equiv-congruence-on-x (implies (interp-flags-equiv x x-equiv) (equal (interp-flags-fix x) (interp-flags-fix x-equiv))) :rule-classes :congruence)