(aig-var-fix x) → new-x
Function:
(defun aig-var-fix (x) (declare (xargs :guard (acl2::aig-var-p x))) (let ((__function__ 'aig-var-fix)) (declare (ignorable __function__)) (mbe :logic (if (acl2::aig-var-p x) x 0) :exec x)))
Theorem:
(defthm aig-var-p-of-aig-var-fix (b* ((new-x (aig-var-fix x))) (acl2::aig-var-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm aig-var-fix-when-aig-var-p (implies (acl2::aig-var-p x) (equal (aig-var-fix x) x)))
Function:
(defun aig-var-equiv$inline (x y) (declare (xargs :guard (and (acl2::aig-var-p x) (acl2::aig-var-p y)))) (equal (aig-var-fix x) (aig-var-fix y)))
Theorem:
(defthm aig-var-equiv-is-an-equivalence (and (booleanp (aig-var-equiv x y)) (aig-var-equiv x x) (implies (aig-var-equiv x y) (aig-var-equiv y x)) (implies (and (aig-var-equiv x y) (aig-var-equiv y z)) (aig-var-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm aig-var-equiv-implies-equal-aig-var-fix-1 (implies (aig-var-equiv x x-equiv) (equal (aig-var-fix x) (aig-var-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aig-var-fix-under-aig-var-equiv (aig-var-equiv (aig-var-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))