• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
        • Fairness-criteria
        • Candidate-with-least-nth-place-votes
        • Eliminate-candidate
        • First-choice-of-majority-p
        • Candidate-ids
        • Irv
        • Create-nth-choice-count-alist
          • Create-count-alist
            • Count-alistp
            • Make-nth-choice-list
          • Irv-alt
          • Irv-ballot-p
          • Majority
          • Number-of-candidates
          • List-elements-equal
          • Number-of-voters
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Create-count-alist

    Count-alistp

    Recognizer for a count alist (see create-count-alist)

    Signature
    (count-alistp l) → *

    Definitions and Theorems

    Function: count-alistp

    (defun count-alistp (l)
      (declare (xargs :guard t))
      (let ((__function__ 'count-alistp))
        (declare (ignorable __function__))
        (cond ((atom l) (eq l nil))
              (t (and (consp (car l))
                      (natp (caar l))
                      (natp (cdar l))
                      (count-alistp (cdr l)))))))

    Theorem: count-alistp-implies-alistp

    (defthm count-alistp-implies-alistp
      (implies (count-alistp l) (alistp l)))

    Theorem: nat-listp-of-strip-cars-of-count-alistp

    (defthm nat-listp-of-strip-cars-of-count-alistp
      (implies (count-alistp alst)
               (nat-listp (strip-cars alst))))

    Theorem: nat-listp-of-strip-cdrs-of-count-alistp

    (defthm nat-listp-of-strip-cdrs-of-count-alistp
      (implies (count-alistp alst)
               (nat-listp (strip-cdrs alst))))

    Theorem: natp-of-key-of-first-pair-of-count-alistp

    (defthm natp-of-key-of-first-pair-of-count-alistp
      (implies (and (count-alistp alst) (consp alst))
               (natp (caar alst))))