Basic equivalence relation for jcinitializer structures.
Function:
(defun jcinitializer-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (jcinitializerp acl2::x) (jcinitializerp acl2::y)))) (equal (jcinitializer-fix acl2::x) (jcinitializer-fix acl2::y)))
Theorem:
(defthm jcinitializer-equiv-is-an-equivalence (and (booleanp (jcinitializer-equiv x y)) (jcinitializer-equiv x x) (implies (jcinitializer-equiv x y) (jcinitializer-equiv y x)) (implies (and (jcinitializer-equiv x y) (jcinitializer-equiv y z)) (jcinitializer-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm jcinitializer-equiv-implies-equal-jcinitializer-fix-1 (implies (jcinitializer-equiv acl2::x x-equiv) (equal (jcinitializer-fix acl2::x) (jcinitializer-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm jcinitializer-fix-under-jcinitializer-equiv (jcinitializer-equiv (jcinitializer-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-jcinitializer-fix-1-forward-to-jcinitializer-equiv (implies (equal (jcinitializer-fix acl2::x) acl2::y) (jcinitializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-jcinitializer-fix-2-forward-to-jcinitializer-equiv (implies (equal acl2::x (jcinitializer-fix acl2::y)) (jcinitializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jcinitializer-equiv-of-jcinitializer-fix-1-forward (implies (jcinitializer-equiv (jcinitializer-fix acl2::x) acl2::y) (jcinitializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jcinitializer-equiv-of-jcinitializer-fix-2-forward (implies (jcinitializer-equiv acl2::x (jcinitializer-fix acl2::y)) (jcinitializer-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)