Basic equivalence relation for jstatem structures.
Function:
(defun jstatem-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (jstatemp acl2::x) (jstatemp acl2::y)))) (equal (jstatem-fix acl2::x) (jstatem-fix acl2::y)))
Theorem:
(defthm jstatem-equiv-is-an-equivalence (and (booleanp (jstatem-equiv x y)) (jstatem-equiv x x) (implies (jstatem-equiv x y) (jstatem-equiv y x)) (implies (and (jstatem-equiv x y) (jstatem-equiv y z)) (jstatem-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm jstatem-equiv-implies-equal-jstatem-fix-1 (implies (jstatem-equiv acl2::x x-equiv) (equal (jstatem-fix acl2::x) (jstatem-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm jstatem-fix-under-jstatem-equiv (jstatem-equiv (jstatem-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-jstatem-fix-1-forward-to-jstatem-equiv (implies (equal (jstatem-fix acl2::x) acl2::y) (jstatem-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-jstatem-fix-2-forward-to-jstatem-equiv (implies (equal acl2::x (jstatem-fix acl2::y)) (jstatem-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jstatem-equiv-of-jstatem-fix-1-forward (implies (jstatem-equiv (jstatem-fix acl2::x) acl2::y) (jstatem-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm jstatem-equiv-of-jstatem-fix-2-forward (implies (jstatem-equiv acl2::x (jstatem-fix acl2::y)) (jstatem-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)