Basic equivalence relation for junop structures.
Function:
(defun junop-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (junopp acl2::x) (junopp acl2::y)))) (equal (junop-fix acl2::x) (junop-fix acl2::y)))
Theorem:
(defthm junop-equiv-is-an-equivalence (and (booleanp (junop-equiv x y)) (junop-equiv x x) (implies (junop-equiv x y) (junop-equiv y x)) (implies (and (junop-equiv x y) (junop-equiv y z)) (junop-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm junop-equiv-implies-equal-junop-fix-1 (implies (junop-equiv acl2::x x-equiv) (equal (junop-fix acl2::x) (junop-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm junop-fix-under-junop-equiv (junop-equiv (junop-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-junop-fix-1-forward-to-junop-equiv (implies (equal (junop-fix acl2::x) acl2::y) (junop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-junop-fix-2-forward-to-junop-equiv (implies (equal acl2::x (junop-fix acl2::y)) (junop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm junop-equiv-of-junop-fix-1-forward (implies (junop-equiv (junop-fix acl2::x) acl2::y) (junop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm junop-equiv-of-junop-fix-2-forward (implies (junop-equiv acl2::x (junop-fix acl2::y)) (junop-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)