• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Semantics
        • Lifting
        • R1cs-subset
        • Well-formedness
          • Definition-list-wfp
            • Definition-wfp
            • Constraint-wfp
            • Constraint-list-wfp
            • System-wfp
          • Abstract-syntax
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Well-formedness

    Definition-list-wfp

    Check if a list of definitions is well-formed.

    Signature
    (definition-list-wfp defs) → yes/no
    Arguments
    defs — Guard (definition-listp defs).
    Returns
    yes/no — Type (booleanp yes/no).

    The empty list of definitions is well-formed, and every well-formed list of definitions can be extended by adding a definition that is well-formed with respect to that list. To iterate through the list more naturally, we use an auxiliary function that operates on the reversed list.

    Definitions and Theorems

    Function: definition-list-wfp-aux

    (defun definition-list-wfp-aux (rev-defs)
      (declare (xargs :guard (definition-listp rev-defs)))
      (let ((__function__ 'definition-list-wfp-aux))
        (declare (ignorable __function__))
        (or (endp rev-defs)
            (and (definition-list-wfp-aux (cdr rev-defs))
                 (definition-wfp (car rev-defs)
                                 (cdr rev-defs))))))

    Theorem: booleanp-of-definition-list-wfp-aux

    (defthm booleanp-of-definition-list-wfp-aux
      (b* ((yes/no (definition-list-wfp-aux rev-defs)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: definition-list-wfp-aux-of-definition-list-fix-rev-defs

    (defthm definition-list-wfp-aux-of-definition-list-fix-rev-defs
      (equal (definition-list-wfp-aux (definition-list-fix rev-defs))
             (definition-list-wfp-aux rev-defs)))

    Theorem: definition-list-wfp-aux-definition-list-equiv-congruence-on-rev-defs

    (defthm
     definition-list-wfp-aux-definition-list-equiv-congruence-on-rev-defs
     (implies (definition-list-equiv rev-defs rev-defs-equiv)
              (equal (definition-list-wfp-aux rev-defs)
                     (definition-list-wfp-aux rev-defs-equiv)))
     :rule-classes :congruence)

    Function: definition-list-wfp

    (defun definition-list-wfp (defs)
      (declare (xargs :guard (definition-listp defs)))
      (let ((__function__ 'definition-list-wfp))
        (declare (ignorable __function__))
        (definition-list-wfp-aux (rev defs))))

    Theorem: booleanp-of-definition-list-wfp

    (defthm booleanp-of-definition-list-wfp
      (b* ((yes/no (definition-list-wfp defs)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: definition-list-wfp-of-definition-list-fix-defs

    (defthm definition-list-wfp-of-definition-list-fix-defs
      (equal (definition-list-wfp (definition-list-fix defs))
             (definition-list-wfp defs)))

    Theorem: definition-list-wfp-definition-list-equiv-congruence-on-defs

    (defthm definition-list-wfp-definition-list-equiv-congruence-on-defs
      (implies (definition-list-equiv defs defs-equiv)
               (equal (definition-list-wfp defs)
                      (definition-list-wfp defs-equiv)))
      :rule-classes :congruence)