• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
        • Proof-support
        • Semantics
        • Lifting
          • Lift-thm
          • Lift-thm-constr-satp-specialized-lemma
          • Lift-var-name-list
          • Lift-thm-constr-to-def-satp-specialized-lemmas
          • Lift-thm-definition-satp-specialized-lemma
          • Lift-info
          • Lift-var-name
          • Lift-thm-def-hyps
          • Lift-definition
          • Lift-expression
          • Lift-thm-asgfree-pairs
          • Lift
          • Lift-thm-free-inst
            • Lift-fn
            • Lift-thm-type-prescriptions-for-called-preds
            • Lift-rel-name
            • Lift-constraint
            • Lift-thm-omap-keys-lemma-instances
            • Lift-table-add
            • Lift-rules
            • Lift-thm-called-lift-thms
            • Lift-rel-name-set-to-list
            • Lift-gen-fep-terms
            • Lift-expression-list
            • Lift-constraint-list
            • Lift-var-name-set-to-list
            • Lift-thm-asgfree-pairs-aux
            • Current-package+
            • Lift-table
          • R1cs-subset
          • Well-formedness
          • Abstract-syntax
          • Concrete-syntax
          • R1cs-bridge
          • Parser-interface
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Riscv
        • Bitcoin
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Lifting

    Lift-thm-free-inst

    Calculate an instantiation of free variables.

    Signature
    (lift-thm-free-inst free witness state) → doublets
    Arguments
    free — Guard (name-setp free).
    witness — A term.
    Returns
    doublets — Type (doublet-listp doublets).

    This is used to prove the lifting theorem, precisely the `only if' direction of the theorem for the case in which the relation has free variables. This instantiation is used in a lemma instance (see lift-thm). The instantiation replaces each variable with its lookup in the witness term of the defun-sk.

    Definitions and Theorems

    Function: lift-thm-free-inst

    (defun lift-thm-free-inst (free witness state)
     (declare (xargs :stobjs (state)))
     (declare (xargs :guard (name-setp free)))
     (let ((__function__ 'lift-thm-free-inst))
      (declare (ignorable __function__))
      (cond
       ((emptyp free) nil)
       (t
        (b* ((var (head free)))
         (cons
          (cons
             (lift-var-name var state)
             (cons (cons 'cdr
                         (cons (cons 'omap::assoc
                                     (cons (cons 'quote (cons var 'nil))
                                           (cons witness 'nil)))
                               'nil))
                   'nil))
          (lift-thm-free-inst (tail free)
                              witness state)))))))

    Theorem: doublet-listp-of-lift-thm-free-inst

    (defthm doublet-listp-of-lift-thm-free-inst
      (b* ((doublets (lift-thm-free-inst free witness state)))
        (doublet-listp doublets))
      :rule-classes :rewrite)