Shallowly embedded semantics of a list of constraints.
(sesem-constraint-list constrs prime state) → terms
This lifts sesem-constraint to lists. We obtain a list of terms.
Function:
(defun sesem-constraint-list (constrs prime state) (declare (xargs :stobjs (state))) (declare (xargs :guard (and (constraint-listp constrs) (symbolp prime)))) (let ((__function__ 'sesem-constraint-list)) (declare (ignorable __function__)) (cond ((endp constrs) nil) (t (cons (sesem-constraint (car constrs) prime state) (sesem-constraint-list (cdr constrs) prime state))))))
Theorem:
(defthm true-listp-of-sesem-constraint-list (b* ((terms (sesem-constraint-list constrs prime state))) (true-listp terms)) :rule-classes :rewrite)