Semantics of a shift instruction with the
Function:
(defun exec64-op-imms-32 (funct rd rs1 imm stat) (declare (xargs :guard (and (op-imms-32-funct-p funct) (ubyte5p rd) (ubyte5p rs1) (ubyte5p imm) (state64p stat)))) (let ((__function__ 'exec64-op-imms-32)) (declare (ignorable __function__)) (op-imms-32-funct-case funct :slliw (exec64-slliw rd rs1 imm stat) :srliw (exec64-srliw rd rs1 imm stat) :sraiw (exec64-sraiw rd rs1 imm stat))))
Theorem:
(defthm state64p-of-exec64-op-imms-32 (b* ((new-stat (exec64-op-imms-32 funct rd rs1 imm stat))) (state64p new-stat)) :rule-classes :rewrite)
Theorem:
(defthm exec64-op-imms-32-of-op-imms-32-funct-fix-funct (equal (exec64-op-imms-32 (op-imms-32-funct-fix funct) rd rs1 imm stat) (exec64-op-imms-32 funct rd rs1 imm stat)))
Theorem:
(defthm exec64-op-imms-32-op-imms-32-funct-equiv-congruence-on-funct (implies (op-imms-32-funct-equiv funct funct-equiv) (equal (exec64-op-imms-32 funct rd rs1 imm stat) (exec64-op-imms-32 funct-equiv rd rs1 imm stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-imms-32-of-ubyte5-fix-rd (equal (exec64-op-imms-32 funct (ubyte5-fix rd) rs1 imm stat) (exec64-op-imms-32 funct rd rs1 imm stat)))
Theorem:
(defthm exec64-op-imms-32-ubyte5-equiv-congruence-on-rd (implies (ubyte5-equiv rd rd-equiv) (equal (exec64-op-imms-32 funct rd rs1 imm stat) (exec64-op-imms-32 funct rd-equiv rs1 imm stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-imms-32-of-ubyte5-fix-rs1 (equal (exec64-op-imms-32 funct rd (ubyte5-fix rs1) imm stat) (exec64-op-imms-32 funct rd rs1 imm stat)))
Theorem:
(defthm exec64-op-imms-32-ubyte5-equiv-congruence-on-rs1 (implies (ubyte5-equiv rs1 rs1-equiv) (equal (exec64-op-imms-32 funct rd rs1 imm stat) (exec64-op-imms-32 funct rd rs1-equiv imm stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-imms-32-of-ubyte5-fix-imm (equal (exec64-op-imms-32 funct rd rs1 (ubyte5-fix imm) stat) (exec64-op-imms-32 funct rd rs1 imm stat)))
Theorem:
(defthm exec64-op-imms-32-ubyte5-equiv-congruence-on-imm (implies (ubyte5-equiv imm imm-equiv) (equal (exec64-op-imms-32 funct rd rs1 imm stat) (exec64-op-imms-32 funct rd rs1 imm-equiv stat))) :rule-classes :congruence)
Theorem:
(defthm exec64-op-imms-32-of-state64-fix-stat (equal (exec64-op-imms-32 funct rd rs1 imm (state64-fix stat)) (exec64-op-imms-32 funct rd rs1 imm stat)))
Theorem:
(defthm exec64-op-imms-32-state64-equiv-congruence-on-stat (implies (state64-equiv stat stat-equiv) (equal (exec64-op-imms-32 funct rd rs1 imm stat) (exec64-op-imms-32 funct rd rs1 imm stat-equiv))) :rule-classes :congruence)