Fixing function for store-funct structures.
(store-funct-fix x) → new-x
Function:
(defun store-funct-fix$inline (x) (declare (xargs :guard (store-funct-p x))) (let ((__function__ 'store-funct-fix)) (declare (ignorable __function__)) (mbe :logic (case (store-funct-kind x) (:sb (cons :sb (list))) (:sh (cons :sh (list))) (:sw (cons :sw (list))) (:sd (cons :sd (list)))) :exec x)))
Theorem:
(defthm store-funct-p-of-store-funct-fix (b* ((new-x (store-funct-fix$inline x))) (store-funct-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm store-funct-fix-when-store-funct-p (implies (store-funct-p x) (equal (store-funct-fix x) x)))
Function:
(defun store-funct-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (store-funct-p acl2::x) (store-funct-p acl2::y)))) (equal (store-funct-fix acl2::x) (store-funct-fix acl2::y)))
Theorem:
(defthm store-funct-equiv-is-an-equivalence (and (booleanp (store-funct-equiv x y)) (store-funct-equiv x x) (implies (store-funct-equiv x y) (store-funct-equiv y x)) (implies (and (store-funct-equiv x y) (store-funct-equiv y z)) (store-funct-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm store-funct-equiv-implies-equal-store-funct-fix-1 (implies (store-funct-equiv acl2::x x-equiv) (equal (store-funct-fix acl2::x) (store-funct-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm store-funct-fix-under-store-funct-equiv (store-funct-equiv (store-funct-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-store-funct-fix-1-forward-to-store-funct-equiv (implies (equal (store-funct-fix acl2::x) acl2::y) (store-funct-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-store-funct-fix-2-forward-to-store-funct-equiv (implies (equal acl2::x (store-funct-fix acl2::y)) (store-funct-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm store-funct-equiv-of-store-funct-fix-1-forward (implies (store-funct-equiv (store-funct-fix acl2::x) acl2::y) (store-funct-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm store-funct-equiv-of-store-funct-fix-2-forward (implies (store-funct-equiv acl2::x (store-funct-fix acl2::y)) (store-funct-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm store-funct-kind$inline-of-store-funct-fix-x (equal (store-funct-kind$inline (store-funct-fix x)) (store-funct-kind$inline x)))
Theorem:
(defthm store-funct-kind$inline-store-funct-equiv-congruence-on-x (implies (store-funct-equiv x x-equiv) (equal (store-funct-kind$inline x) (store-funct-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-store-funct-fix (consp (store-funct-fix x)) :rule-classes :type-prescription)