Basic equivalence relation for decl-list structures.
Function:
(defun decl-list-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (decl-listp acl2::x) (decl-listp acl2::y)))) (equal (decl-list-fix acl2::x) (decl-list-fix acl2::y)))
Theorem:
(defthm decl-list-equiv-is-an-equivalence (and (booleanp (decl-list-equiv x y)) (decl-list-equiv x x) (implies (decl-list-equiv x y) (decl-list-equiv y x)) (implies (and (decl-list-equiv x y) (decl-list-equiv y z)) (decl-list-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm decl-list-equiv-implies-equal-decl-list-fix-1 (implies (decl-list-equiv acl2::x x-equiv) (equal (decl-list-fix acl2::x) (decl-list-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm decl-list-fix-under-decl-list-equiv (decl-list-equiv (decl-list-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-decl-list-fix-1-forward-to-decl-list-equiv (implies (equal (decl-list-fix acl2::x) acl2::y) (decl-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-decl-list-fix-2-forward-to-decl-list-equiv (implies (equal acl2::x (decl-list-fix acl2::y)) (decl-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm decl-list-equiv-of-decl-list-fix-1-forward (implies (decl-list-equiv (decl-list-fix acl2::x) acl2::y) (decl-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm decl-list-equiv-of-decl-list-fix-2-forward (implies (decl-list-equiv acl2::x (decl-list-fix acl2::y)) (decl-list-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)