Basic equivalence relation for fhg-args structures.
Function:
(defun fhg-args-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fhg-args-p acl2::x) (fhg-args-p acl2::y)))) (equal (fhg-args-fix acl2::x) (fhg-args-fix acl2::y)))
Theorem:
(defthm fhg-args-equiv-is-an-equivalence (and (booleanp (fhg-args-equiv x y)) (fhg-args-equiv x x) (implies (fhg-args-equiv x y) (fhg-args-equiv y x)) (implies (and (fhg-args-equiv x y) (fhg-args-equiv y z)) (fhg-args-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fhg-args-equiv-implies-equal-fhg-args-fix-1 (implies (fhg-args-equiv acl2::x x-equiv) (equal (fhg-args-fix acl2::x) (fhg-args-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fhg-args-fix-under-fhg-args-equiv (fhg-args-equiv (fhg-args-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fhg-args-fix-1-forward-to-fhg-args-equiv (implies (equal (fhg-args-fix acl2::x) acl2::y) (fhg-args-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fhg-args-fix-2-forward-to-fhg-args-equiv (implies (equal acl2::x (fhg-args-fix acl2::y)) (fhg-args-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fhg-args-equiv-of-fhg-args-fix-1-forward (implies (fhg-args-equiv (fhg-args-fix acl2::x) acl2::y) (fhg-args-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fhg-args-equiv-of-fhg-args-fix-2-forward (implies (fhg-args-equiv acl2::x (fhg-args-fix acl2::y)) (fhg-args-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)