Get the formals field from a lambda-binding.
(lambda-binding->formals x) → formals
This is an ordinary field accessor created by defprod.
Function:
(defun lambda-binding->formals$inline (x) (declare (xargs :guard (lambda-binding-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'lambda-binding->formals)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x)) (formals (symbol-list-fix (cdr (std::da-nth 0 x)))) (actuals (pseudo-term-list-fix (cdr (std::da-nth 1 x))))) (lambda->formals-fix formals actuals)) :exec (cdr (std::da-nth 0 x)))))
Theorem:
(defthm symbol-listp-of-lambda-binding->formals (b* ((formals (lambda-binding->formals$inline x))) (symbol-listp formals)) :rule-classes :rewrite)
Theorem:
(defthm lambda-binding->formals$inline-of-lambda-binding-fix-x (equal (lambda-binding->formals$inline (lambda-binding-fix x)) (lambda-binding->formals$inline x)))
Theorem:
(defthm lambda-binding->formals$inline-lambda-binding-equiv-congruence-on-x (implies (lambda-binding-equiv x x-equiv) (equal (lambda-binding->formals$inline x) (lambda-binding->formals$inline x-equiv))) :rule-classes :congruence)