Recognizer for special-char-alist.
(special-char-alistp x) → *
Function:
(defun special-char-alistp (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'special-char-alistp)) (declare (ignorable acl2::__function__)) (if (atom x) t (and (consp (car x)) (characterp (caar x)) (character-listp (cdar x)) (special-char-alistp (cdr x))))))
Theorem:
(defthm special-char-alistp-of-revappend (equal (special-char-alistp (revappend acl2::x acl2::y)) (and (special-char-alistp (acl2::list-fix acl2::x)) (special-char-alistp acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-remove (implies (special-char-alistp acl2::x) (special-char-alistp (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-last (implies (special-char-alistp (double-rewrite acl2::x)) (special-char-alistp (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-nthcdr (implies (special-char-alistp (double-rewrite acl2::x)) (special-char-alistp (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-butlast (implies (special-char-alistp (double-rewrite acl2::x)) (special-char-alistp (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-update-nth (implies (special-char-alistp (double-rewrite acl2::x)) (iff (special-char-alistp (update-nth acl2::n acl2::y acl2::x)) (and (and (consp acl2::y) (characterp (car acl2::y)) (character-listp (cdr acl2::y))) (or (<= (nfix acl2::n) (len acl2::x)) (and (consp nil) (characterp (car nil)) (character-listp (cdr nil))))))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-repeat (iff (special-char-alistp (acl2::repeat acl2::n acl2::x)) (or (and (consp acl2::x) (characterp (car acl2::x)) (character-listp (cdr acl2::x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-take (implies (special-char-alistp (double-rewrite acl2::x)) (iff (special-char-alistp (take acl2::n acl2::x)) (or (and (consp nil) (characterp (car nil)) (character-listp (cdr nil))) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-union-equal (equal (special-char-alistp (union-equal acl2::x acl2::y)) (and (special-char-alistp (acl2::list-fix acl2::x)) (special-char-alistp (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-intersection-equal-2 (implies (special-char-alistp (double-rewrite acl2::y)) (special-char-alistp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-intersection-equal-1 (implies (special-char-alistp (double-rewrite acl2::x)) (special-char-alistp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-set-difference-equal (implies (special-char-alistp acl2::x) (special-char-alistp (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-set-equiv-congruence (implies (acl2::set-equiv acl2::x acl2::y) (equal (special-char-alistp acl2::x) (special-char-alistp acl2::y))) :rule-classes :congruence)
Theorem:
(defthm special-char-alistp-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (special-char-alistp acl2::y)) (special-char-alistp acl2::x)) (implies (and (special-char-alistp acl2::y) (subsetp-equal acl2::x acl2::y)) (special-char-alistp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-rcons (iff (special-char-alistp (acl2::rcons acl2::a acl2::x)) (and (and (consp acl2::a) (characterp (car acl2::a)) (character-listp (cdr acl2::a))) (special-char-alistp (acl2::list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-rev (equal (special-char-alistp (acl2::rev acl2::x)) (special-char-alistp (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-duplicated-members (implies (special-char-alistp acl2::x) (special-char-alistp (acl2::duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-difference (implies (special-char-alistp acl2::x) (special-char-alistp (set::difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-intersect-2 (implies (special-char-alistp acl2::y) (special-char-alistp (set::intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-intersect-1 (implies (special-char-alistp acl2::x) (special-char-alistp (set::intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-union (iff (special-char-alistp (set::union acl2::x acl2::y)) (and (special-char-alistp (set::sfix acl2::x)) (special-char-alistp (set::sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-mergesort (iff (special-char-alistp (set::mergesort acl2::x)) (special-char-alistp (acl2::list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-delete (implies (special-char-alistp acl2::x) (special-char-alistp (set::delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-insert (iff (special-char-alistp (set::insert acl2::a acl2::x)) (and (special-char-alistp (set::sfix acl2::x)) (and (consp acl2::a) (characterp (car acl2::a)) (character-listp (cdr acl2::a))))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-sfix (iff (special-char-alistp (set::sfix acl2::x)) (or (special-char-alistp acl2::x) (not (set::setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-list-fix (equal (special-char-alistp (acl2::list-fix acl2::x)) (special-char-alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-append (equal (special-char-alistp (append acl2::a acl2::b)) (and (special-char-alistp acl2::a) (special-char-alistp acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-when-not-consp (implies (not (consp acl2::x)) (special-char-alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-cdr-when-special-char-alistp (implies (special-char-alistp (double-rewrite acl2::x)) (special-char-alistp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-cons (equal (special-char-alistp (cons acl2::a acl2::x)) (and (and (consp acl2::a) (characterp (car acl2::a)) (character-listp (cdr acl2::a))) (special-char-alistp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-fast-alist-clean (implies (special-char-alistp acl2::x) (special-char-alistp (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-hons-shrink-alist (implies (and (special-char-alistp acl2::x) (special-char-alistp acl2::y)) (special-char-alistp (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm special-char-alistp-of-hons-acons (equal (special-char-alistp (hons-acons acl2::a acl2::n acl2::x)) (and (characterp acl2::a) (character-listp acl2::n) (special-char-alistp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm character-listp-of-cdr-of-hons-assoc-equal-when-special-char-alistp (implies (special-char-alistp acl2::x) (iff (character-listp (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (character-listp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm character-listp-of-cdar-when-special-char-alistp (implies (special-char-alistp acl2::x) (iff (character-listp (cdar acl2::x)) (or (consp acl2::x) (character-listp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm characterp-of-caar-when-special-char-alistp (implies (special-char-alistp acl2::x) (iff (characterp (caar acl2::x)) (or (consp acl2::x) (characterp nil)))) :rule-classes ((:rewrite)))