Recognizer for alias-alist.
(alias-alist-p x) → *
Function:
(defun alias-alist-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'alias-alist-p)) (declare (ignorable acl2::__function__)) (if (atom x) (eq x nil) (and (consp (car x)) (sv::svar-p (caar x)) (svex-p (cdar x)) (alias-alist-p (cdr x))))))
Theorem:
(defthm alias-alist-p-of-butlast (implies (alias-alist-p (double-rewrite acl2::x)) (alias-alist-p (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-append (equal (alias-alist-p (append acl2::a acl2::b)) (and (alias-alist-p (list-fix acl2::a)) (alias-alist-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-repeat (iff (alias-alist-p (repeat acl2::n acl2::x)) (or (and (consp acl2::x) (sv::svar-p (car acl2::x)) (svex-p (cdr acl2::x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-rev (equal (alias-alist-p (rev acl2::x)) (alias-alist-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-list-fix (implies (alias-alist-p acl2::x) (alias-alist-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-alias-alist-p-compound-recognizer (implies (alias-alist-p acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm alias-alist-p-when-not-consp (implies (not (consp acl2::x)) (equal (alias-alist-p acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-cdr-when-alias-alist-p (implies (alias-alist-p (double-rewrite acl2::x)) (alias-alist-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-cons (equal (alias-alist-p (cons acl2::a acl2::x)) (and (and (consp acl2::a) (sv::svar-p (car acl2::a)) (svex-p (cdr acl2::a))) (alias-alist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-remove-assoc (implies (alias-alist-p acl2::x) (alias-alist-p (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-put-assoc (implies (and (alias-alist-p acl2::x)) (iff (alias-alist-p (put-assoc-equal acl2::name acl2::val acl2::x)) (and (sv::svar-p acl2::name) (svex-p acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-fast-alist-clean (implies (alias-alist-p acl2::x) (alias-alist-p (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-hons-shrink-alist (implies (and (alias-alist-p acl2::x) (alias-alist-p acl2::y)) (alias-alist-p (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm alias-alist-p-of-hons-acons (equal (alias-alist-p (hons-acons acl2::a acl2::n acl2::x)) (and (sv::svar-p acl2::a) (svex-p acl2::n) (alias-alist-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-p-of-cdr-of-hons-assoc-equal-when-alias-alist-p (implies (alias-alist-p acl2::x) (iff (svex-p (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (svex-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-alias-alist-p-rewrite (implies (alias-alist-p acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-alias-alist-p (implies (alias-alist-p acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm svex-p-of-cdar-when-alias-alist-p (implies (alias-alist-p acl2::x) (iff (svex-p (cdar acl2::x)) (or (consp acl2::x) (svex-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-p-of-caar-when-alias-alist-p (implies (alias-alist-p acl2::x) (iff (sv::svar-p (caar acl2::x)) (or (consp acl2::x) (sv::svar-p nil)))) :rule-classes ((:rewrite)))