Recognizer for svexl-node-array.
(svexl-node-array-p x) → *
Function:
(defun svexl-node-array-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'svexl-node-array-p)) (declare (ignorable acl2::__function__)) (if (atom x) (eq x nil) (and (consp (car x)) (natp (caar x)) (svexl-node-p (cdar x)) (svexl-node-array-p (cdr x))))))
Theorem:
(defthm svexl-node-array-p-of-butlast (implies (svexl-node-array-p (double-rewrite acl2::x)) (svexl-node-array-p (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-append (equal (svexl-node-array-p (append acl2::a acl2::b)) (and (svexl-node-array-p (list-fix acl2::a)) (svexl-node-array-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-repeat (iff (svexl-node-array-p (repeat acl2::n acl2::x)) (or (and (consp acl2::x) (natp (car acl2::x)) (svexl-node-p (cdr acl2::x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-rev (equal (svexl-node-array-p (rev acl2::x)) (svexl-node-array-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-list-fix (implies (svexl-node-array-p acl2::x) (svexl-node-array-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-svexl-node-array-p-compound-recognizer (implies (svexl-node-array-p acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm svexl-node-array-p-when-not-consp (implies (not (consp acl2::x)) (equal (svexl-node-array-p acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-cdr-when-svexl-node-array-p (implies (svexl-node-array-p (double-rewrite acl2::x)) (svexl-node-array-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-cons (equal (svexl-node-array-p (cons acl2::a acl2::x)) (and (and (consp acl2::a) (natp (car acl2::a)) (svexl-node-p (cdr acl2::a))) (svexl-node-array-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-remove-assoc (implies (svexl-node-array-p acl2::x) (svexl-node-array-p (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-put-assoc (implies (and (svexl-node-array-p acl2::x)) (iff (svexl-node-array-p (put-assoc-equal acl2::name acl2::val acl2::x)) (and (natp acl2::name) (svexl-node-p acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-fast-alist-clean (implies (svexl-node-array-p acl2::x) (svexl-node-array-p (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-hons-shrink-alist (implies (and (svexl-node-array-p acl2::x) (svexl-node-array-p acl2::y)) (svexl-node-array-p (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-array-p-of-hons-acons (equal (svexl-node-array-p (hons-acons acl2::a acl2::n acl2::x)) (and (natp acl2::a) (svexl-node-p acl2::n) (svexl-node-array-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svexl-node-p-of-cdr-of-hons-assoc-equal-when-svexl-node-array-p (implies (svexl-node-array-p acl2::x) (iff (svexl-node-p (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (svexl-node-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-svexl-node-array-p-rewrite (implies (svexl-node-array-p acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-svexl-node-array-p (implies (svexl-node-array-p acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm svexl-node-p-of-cdar-when-svexl-node-array-p (implies (svexl-node-array-p acl2::x) (iff (svexl-node-p (cdar acl2::x)) (or (consp acl2::x) (svexl-node-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm natp-of-caar-when-svexl-node-array-p (implies (svexl-node-array-p acl2::x) (iff (natp (caar acl2::x)) (or (consp acl2::x) (natp nil)))) :rule-classes ((:rewrite)))