(constraintlist-compose x a) → new-x
Function:
(defun constraintlist-compose (x a) (declare (xargs :guard (and (constraintlist-p x) (svex-alist-p a)))) (let ((__function__ 'constraintlist-compose)) (declare (ignorable __function__)) (if (atom x) nil (cons (change-constraint (car x) :cond (svex-compose (constraint->cond (car x)) a)) (constraintlist-compose (cdr x) a)))))
Theorem:
(defthm constraintlist-p-of-constraintlist-compose (b* ((new-x (constraintlist-compose x a))) (constraintlist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vars-of-constraintlist-compose (b* ((?new-x (constraintlist-compose x a))) (implies (and (not (member v (constraintlist-vars x))) (not (member v (svex-alist-vars a)))) (not (member v (constraintlist-vars new-x))))))
Theorem:
(defthm constraintlist-compose-of-constraintlist-fix-x (equal (constraintlist-compose (constraintlist-fix x) a) (constraintlist-compose x a)))
Theorem:
(defthm constraintlist-compose-constraintlist-equiv-congruence-on-x (implies (constraintlist-equiv x x-equiv) (equal (constraintlist-compose x a) (constraintlist-compose x-equiv a))) :rule-classes :congruence)
Theorem:
(defthm constraintlist-compose-of-svex-alist-fix-a (equal (constraintlist-compose x (svex-alist-fix a)) (constraintlist-compose x a)))
Theorem:
(defthm constraintlist-compose-svex-alist-equiv-congruence-on-a (implies (svex-alist-equiv a a-equiv) (equal (constraintlist-compose x a) (constraintlist-compose x a-equiv))) :rule-classes :congruence)