Basic equivalence relation for driverlist structures.
Function:
(defun driverlist-equiv$inline (x y) (declare (xargs :guard (and (driverlist-p x) (driverlist-p y)))) (equal (driverlist-fix x) (driverlist-fix y)))
Theorem:
(defthm driverlist-equiv-is-an-equivalence (and (booleanp (driverlist-equiv x y)) (driverlist-equiv x x) (implies (driverlist-equiv x y) (driverlist-equiv y x)) (implies (and (driverlist-equiv x y) (driverlist-equiv y z)) (driverlist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm driverlist-equiv-implies-equal-driverlist-fix-1 (implies (driverlist-equiv x x-equiv) (equal (driverlist-fix x) (driverlist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm driverlist-fix-under-driverlist-equiv (driverlist-equiv (driverlist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-driverlist-fix-1-forward-to-driverlist-equiv (implies (equal (driverlist-fix x) y) (driverlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-driverlist-fix-2-forward-to-driverlist-equiv (implies (equal x (driverlist-fix y)) (driverlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm driverlist-equiv-of-driverlist-fix-1-forward (implies (driverlist-equiv (driverlist-fix x) y) (driverlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm driverlist-equiv-of-driverlist-fix-2-forward (implies (driverlist-equiv x (driverlist-fix y)) (driverlist-equiv x y)) :rule-classes :forward-chaining)