(elab-mod$a-fix elab-mod$a) → em
Function:
(defun elab-mod$a-fix (elab-mod$a) (declare (xargs :guard (elab-mod$ap elab-mod$a))) (let ((__function__ 'elab-mod$a-fix)) (declare (ignorable __function__)) (mbe :logic (s :name (modname-fix (g :name elab-mod$a)) (s :totalwires (nfix (g :totalwires elab-mod$a)) (s :totalinsts (nfix (g :totalinsts elab-mod$a)) (s :orig-mod (module-fix (g :orig-mod elab-mod$a)) (s :wires (wirelist-rem-dups (g :wires elab-mod$a)) (s :insts (elab-modinsts-rem-dups (g :insts elab-mod$a)) nil)))))) :exec elab-mod$a)))
Theorem:
(defthm elab-mod$ap-of-elab-mod$a-fix (b* ((em (elab-mod$a-fix elab-mod$a))) (elab-mod$ap em)) :rule-classes :rewrite)
Theorem:
(defthm elab-mod$a-fix-when-elab-mod$ap (implies (elab-mod$ap x) (equal (elab-mod$a-fix x) x)))
Function:
(defun elab-mod$a-equiv$inline (x y) (declare (xargs :guard (and (elab-mod$ap x) (elab-mod$ap y)))) (equal (elab-mod$a-fix x) (elab-mod$a-fix y)))
Theorem:
(defthm elab-mod$a-equiv-is-an-equivalence (and (booleanp (elab-mod$a-equiv x y)) (elab-mod$a-equiv x x) (implies (elab-mod$a-equiv x y) (elab-mod$a-equiv y x)) (implies (and (elab-mod$a-equiv x y) (elab-mod$a-equiv y z)) (elab-mod$a-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm elab-mod$a-equiv-implies-equal-elab-mod$a-fix-1 (implies (elab-mod$a-equiv x x-equiv) (equal (elab-mod$a-fix x) (elab-mod$a-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm elab-mod$a-fix-under-elab-mod$a-equiv (elab-mod$a-equiv (elab-mod$a-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-elab-mod$a-fix-1-forward-to-elab-mod$a-equiv (implies (equal (elab-mod$a-fix x) y) (elab-mod$a-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-elab-mod$a-fix-2-forward-to-elab-mod$a-equiv (implies (equal x (elab-mod$a-fix y)) (elab-mod$a-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-mod$a-equiv-of-elab-mod$a-fix-1-forward (implies (elab-mod$a-equiv (elab-mod$a-fix x) y) (elab-mod$a-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-mod$a-equiv-of-elab-mod$a-fix-2-forward (implies (elab-mod$a-equiv x (elab-mod$a-fix y)) (elab-mod$a-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm acl2::s-of-elab-mod$a-fix-x-under-elab-mod$a-equiv (elab-mod$a-equiv (s k v (elab-mod$a-fix x)) (s k v x)))
Theorem:
(defthm acl2::s-elab-mod$a-equiv-congruence-on-x-under-elab-mod$a-equiv (implies (elab-mod$a-equiv x acl2::x-equiv) (elab-mod$a-equiv (s k v x) (s k v acl2::x-equiv))) :rule-classes :congruence)
Theorem:
(defthm g-of-elab-mod$a-fix (and (equal (g :name (elab-mod$a-fix x)) (modname-fix (g :name x))) (equal (g :totalinsts (elab-mod$a-fix x)) (nfix (g :totalinsts x))) (equal (g :totalwires (elab-mod$a-fix x)) (nfix (g :totalwires x))) (equal (g :orig-mod (elab-mod$a-fix x)) (module-fix (g :orig-mod x)))))
Theorem:
(defthm g-of-elab-mod$a-fix-wires (equal (g :wires (elab-mod$a-fix x)) (wirelist-rem-dups (g :wires x))))
Theorem:
(defthm g-of-elab-mod$a-fix-insts (equal (g :insts (elab-mod$a-fix x)) (elab-modinsts-rem-dups (g :insts x))))