Function:
(defun lhs-norm (x) (declare (xargs :guard (lhs-p x))) (let ((__function__ 'lhs-norm)) (declare (ignorable __function__)) (if (atom x) nil (lhs-cons (car x) (lhs-norm (cdr x))))))
Theorem:
(defthm lhs-p-of-lhs-norm (b* ((xx (lhs-norm x))) (lhs-p xx)) :rule-classes :rewrite)
Theorem:
(defthm lhs-norm-of-lhs-fix-x (equal (lhs-norm (lhs-fix x)) (lhs-norm x)))
Theorem:
(defthm lhs-norm-lhs-equiv-congruence-on-x (implies (lhs-equiv x x-equiv) (equal (lhs-norm x) (lhs-norm x-equiv))) :rule-classes :congruence)
Theorem:
(defthm lhs-norm-when-not-consp (implies (not (consp x)) (equal (lhs-norm x) nil)) :rule-classes ((:rewrite :backchain-limit-lst 0)))
Theorem:
(defthm lhs-norm-of-lhs-cons (equal (lhs-norm (lhs-cons x y)) (lhs-cons x (lhs-norm y))))
Theorem:
(defthm lhs-norm-idempotent (equal (lhs-norm (lhs-norm x)) (lhs-norm x)))
Theorem:
(defthm lhs-norm-atom-of-car (implies (consp (lhs-norm x)) (equal (lhrange->atom (car (lhs-norm x))) (lhrange->atom (car x)))))
Function:
(defun lhs-normp (x) (declare (xargs :guard (lhs-p x))) (let ((__function__ 'lhs-normp)) (declare (ignorable __function__)) (equal x (lhs-norm x))))
Function:
(defun lhs-norm-equiv (x y) (declare (xargs :non-executable t)) (prog2$ (acl2::throw-nonexec-error 'lhs-norm-equiv (list x y)) (equal (lhs-norm x) (lhs-norm y))))
Theorem:
(defthm lhs-norm-equiv-is-an-equivalence (and (booleanp (lhs-norm-equiv x y)) (lhs-norm-equiv x x) (implies (lhs-norm-equiv x y) (lhs-norm-equiv y x)) (implies (and (lhs-norm-equiv x y) (lhs-norm-equiv y z)) (lhs-norm-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm lhs-norm-equiv-implies-equal-lhs-norm-1 (implies (lhs-norm-equiv x x-equiv) (equal (lhs-norm x) (lhs-norm x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm lhs-norm-under-lhs-norm-equiv (lhs-norm-equiv (lhs-norm x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-lhs-norm-1-forward-to-lhs-norm-equiv (implies (equal (lhs-norm x) y) (lhs-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-lhs-norm-2-forward-to-lhs-norm-equiv (implies (equal x (lhs-norm y)) (lhs-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-norm-equiv-of-lhs-norm-1-forward (implies (lhs-norm-equiv (lhs-norm x) y) (lhs-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-norm-equiv-of-lhs-norm-2-forward (implies (lhs-norm-equiv x (lhs-norm y)) (lhs-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-equiv-refines-lhs-norm-equiv (implies (lhs-equiv x y) (lhs-norm-equiv x y)) :rule-classes (:refinement))
Theorem:
(defthm lhs-cons-of-lhs-norm-y-under-lhs-norm-equiv (lhs-norm-equiv (lhs-cons x (lhs-norm y)) (lhs-cons x y)))
Theorem:
(defthm lhs-cons-lhs-norm-equiv-congruence-on-y-under-lhs-norm-equiv (implies (lhs-norm-equiv y y-equiv) (lhs-norm-equiv (lhs-cons x y) (lhs-cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm lhs-eval-of-lhs-norm-x (equal (lhs-eval (lhs-norm x) env) (lhs-eval x env)))
Theorem:
(defthm lhs-eval-lhs-norm-equiv-congruence-on-x (implies (lhs-norm-equiv x x-equiv) (equal (lhs-eval x env) (lhs-eval x-equiv env))) :rule-classes :congruence)
Theorem:
(defthm lhs-eval-zx-of-lhs-norm-x (equal (lhs-eval-zx (lhs-norm x) env) (lhs-eval-zx x env)))
Theorem:
(defthm lhs-eval-zx-lhs-norm-equiv-congruence-on-x (implies (lhs-norm-equiv x x-equiv) (equal (lhs-eval-zx x env) (lhs-eval-zx x-equiv env))) :rule-classes :congruence)
Theorem:
(defthm lhs-norm-cdr-lhs-norm (implies (lhs-normp x) (lhs-normp (cdr x))))
Theorem:
(defthm lhs-normp-of-lhs-norm (lhs-normp (lhs-norm x)))
Theorem:
(defthm lhs-normp-of-lhs-cons (implies (lhs-normp x) (lhs-normp (lhs-cons a x))))
Theorem:
(defthm lhs-norm-when-lhs-normp (implies (lhs-normp x) (equal (lhs-norm x) x)))
Theorem:
(defthm lhs-normp-of-lhs-fix (implies (lhs-normp x) (lhs-normp (lhs-fix x))))