Fixing function for lhs-override structures.
(lhs-override-fix x) → new-x
Function:
(defun lhs-override-fix$inline (x) (declare (xargs :guard (lhs-override-p x))) (let ((__function__ 'lhs-override-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((lhs (lhs-fix (std::prod-car x))) (test (svex-fix (std::prod-car (std::prod-cdr x)))) (val (svex-fix (std::prod-cdr (std::prod-cdr x))))) (std::prod-cons lhs (std::prod-cons test val))) :exec x)))
Theorem:
(defthm lhs-override-p-of-lhs-override-fix (b* ((new-x (lhs-override-fix$inline x))) (lhs-override-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm lhs-override-fix-when-lhs-override-p (implies (lhs-override-p x) (equal (lhs-override-fix x) x)))
Function:
(defun lhs-override-equiv$inline (x y) (declare (xargs :guard (and (lhs-override-p x) (lhs-override-p y)))) (equal (lhs-override-fix x) (lhs-override-fix y)))
Theorem:
(defthm lhs-override-equiv-is-an-equivalence (and (booleanp (lhs-override-equiv x y)) (lhs-override-equiv x x) (implies (lhs-override-equiv x y) (lhs-override-equiv y x)) (implies (and (lhs-override-equiv x y) (lhs-override-equiv y z)) (lhs-override-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm lhs-override-equiv-implies-equal-lhs-override-fix-1 (implies (lhs-override-equiv x x-equiv) (equal (lhs-override-fix x) (lhs-override-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm lhs-override-fix-under-lhs-override-equiv (lhs-override-equiv (lhs-override-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-lhs-override-fix-1-forward-to-lhs-override-equiv (implies (equal (lhs-override-fix x) y) (lhs-override-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-lhs-override-fix-2-forward-to-lhs-override-equiv (implies (equal x (lhs-override-fix y)) (lhs-override-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-override-equiv-of-lhs-override-fix-1-forward (implies (lhs-override-equiv (lhs-override-fix x) y) (lhs-override-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-override-equiv-of-lhs-override-fix-2-forward (implies (lhs-override-equiv x (lhs-override-fix y)) (lhs-override-equiv x y)) :rule-classes :forward-chaining)