Basic equivalence relation for lhs-overridelist structures.
Function:
(defun lhs-overridelist-equiv$inline (x y) (declare (xargs :guard (and (lhs-overridelist-p x) (lhs-overridelist-p y)))) (equal (lhs-overridelist-fix x) (lhs-overridelist-fix y)))
Theorem:
(defthm lhs-overridelist-equiv-is-an-equivalence (and (booleanp (lhs-overridelist-equiv x y)) (lhs-overridelist-equiv x x) (implies (lhs-overridelist-equiv x y) (lhs-overridelist-equiv y x)) (implies (and (lhs-overridelist-equiv x y) (lhs-overridelist-equiv y z)) (lhs-overridelist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm lhs-overridelist-equiv-implies-equal-lhs-overridelist-fix-1 (implies (lhs-overridelist-equiv x x-equiv) (equal (lhs-overridelist-fix x) (lhs-overridelist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm lhs-overridelist-fix-under-lhs-overridelist-equiv (lhs-overridelist-equiv (lhs-overridelist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-lhs-overridelist-fix-1-forward-to-lhs-overridelist-equiv (implies (equal (lhs-overridelist-fix x) y) (lhs-overridelist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-lhs-overridelist-fix-2-forward-to-lhs-overridelist-equiv (implies (equal x (lhs-overridelist-fix y)) (lhs-overridelist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-overridelist-equiv-of-lhs-overridelist-fix-1-forward (implies (lhs-overridelist-equiv (lhs-overridelist-fix x) y) (lhs-overridelist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm lhs-overridelist-equiv-of-lhs-overridelist-fix-2-forward (implies (lhs-overridelist-equiv x (lhs-overridelist-fix y)) (lhs-overridelist-equiv x y)) :rule-classes :forward-chaining)