(sv::maybe-4veclist-fix acl2::x) is a usual fty list fixing function.
(sv::maybe-4veclist-fix acl2::x) → fty::newx
In the logic, we apply sv::maybe-4vec-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.
Function:
(defun sv::maybe-4veclist-fix$inline (acl2::x) (declare (xargs :guard (sv::maybe-4veclist-p acl2::x))) (let ((__function__ 'sv::maybe-4veclist-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom acl2::x) nil (cons (sv::maybe-4vec-fix (car acl2::x)) (sv::maybe-4veclist-fix (cdr acl2::x)))) :exec acl2::x)))
Theorem:
(defthm sv::maybe-4veclist-p-of-maybe-4veclist-fix (b* ((fty::newx (sv::maybe-4veclist-fix$inline acl2::x))) (sv::maybe-4veclist-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm sv::maybe-4veclist-fix-when-maybe-4veclist-p (implies (sv::maybe-4veclist-p acl2::x) (equal (sv::maybe-4veclist-fix acl2::x) acl2::x)))
Function:
(defun sv::maybe-4veclist-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (sv::maybe-4veclist-p acl2::x) (sv::maybe-4veclist-p acl2::y)))) (equal (sv::maybe-4veclist-fix acl2::x) (sv::maybe-4veclist-fix acl2::y)))
Theorem:
(defthm sv::maybe-4veclist-equiv-is-an-equivalence (and (booleanp (sv::maybe-4veclist-equiv acl2::x acl2::y)) (sv::maybe-4veclist-equiv acl2::x acl2::x) (implies (sv::maybe-4veclist-equiv acl2::x acl2::y) (sv::maybe-4veclist-equiv acl2::y acl2::x)) (implies (and (sv::maybe-4veclist-equiv acl2::x acl2::y) (sv::maybe-4veclist-equiv acl2::y acl2::z)) (sv::maybe-4veclist-equiv acl2::x acl2::z))) :rule-classes (:equivalence))
Theorem:
(defthm sv::maybe-4veclist-equiv-implies-equal-maybe-4veclist-fix-1 (implies (sv::maybe-4veclist-equiv acl2::x sv::x-equiv) (equal (sv::maybe-4veclist-fix acl2::x) (sv::maybe-4veclist-fix sv::x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm sv::maybe-4veclist-fix-under-maybe-4veclist-equiv (sv::maybe-4veclist-equiv (sv::maybe-4veclist-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm sv::equal-of-maybe-4veclist-fix-1-forward-to-maybe-4veclist-equiv (implies (equal (sv::maybe-4veclist-fix acl2::x) acl2::y) (sv::maybe-4veclist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sv::equal-of-maybe-4veclist-fix-2-forward-to-maybe-4veclist-equiv (implies (equal acl2::x (sv::maybe-4veclist-fix acl2::y)) (sv::maybe-4veclist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sv::maybe-4veclist-equiv-of-maybe-4veclist-fix-1-forward (implies (sv::maybe-4veclist-equiv (sv::maybe-4veclist-fix acl2::x) acl2::y) (sv::maybe-4veclist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sv::maybe-4veclist-equiv-of-maybe-4veclist-fix-2-forward (implies (sv::maybe-4veclist-equiv acl2::x (sv::maybe-4veclist-fix acl2::y)) (sv::maybe-4veclist-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm sv::car-of-maybe-4veclist-fix-x-under-maybe-4vec-equiv (sv::maybe-4vec-equiv (car (sv::maybe-4veclist-fix acl2::x)) (car acl2::x)))
Theorem:
(defthm sv::car-maybe-4veclist-equiv-congruence-on-x-under-maybe-4vec-equiv (implies (sv::maybe-4veclist-equiv acl2::x sv::x-equiv) (sv::maybe-4vec-equiv (car acl2::x) (car sv::x-equiv))) :rule-classes :congruence)
Theorem:
(defthm sv::cdr-of-maybe-4veclist-fix-x-under-maybe-4veclist-equiv (sv::maybe-4veclist-equiv (cdr (sv::maybe-4veclist-fix acl2::x)) (cdr acl2::x)))
Theorem:
(defthm sv::cdr-maybe-4veclist-equiv-congruence-on-x-under-maybe-4veclist-equiv (implies (sv::maybe-4veclist-equiv acl2::x sv::x-equiv) (sv::maybe-4veclist-equiv (cdr acl2::x) (cdr sv::x-equiv))) :rule-classes :congruence)
Theorem:
(defthm sv::cons-of-maybe-4vec-fix-x-under-maybe-4veclist-equiv (sv::maybe-4veclist-equiv (cons (sv::maybe-4vec-fix acl2::x) acl2::y) (cons acl2::x acl2::y)))
Theorem:
(defthm sv::cons-maybe-4vec-equiv-congruence-on-x-under-maybe-4veclist-equiv (implies (sv::maybe-4vec-equiv acl2::x sv::x-equiv) (sv::maybe-4veclist-equiv (cons acl2::x acl2::y) (cons sv::x-equiv acl2::y))) :rule-classes :congruence)
Theorem:
(defthm sv::cons-of-maybe-4veclist-fix-y-under-maybe-4veclist-equiv (sv::maybe-4veclist-equiv (cons acl2::x (sv::maybe-4veclist-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm sv::cons-maybe-4veclist-equiv-congruence-on-y-under-maybe-4veclist-equiv (implies (sv::maybe-4veclist-equiv acl2::y sv::y-equiv) (sv::maybe-4veclist-equiv (cons acl2::x acl2::y) (cons acl2::x sv::y-equiv))) :rule-classes :congruence)
Theorem:
(defthm sv::consp-of-maybe-4veclist-fix (equal (consp (sv::maybe-4veclist-fix acl2::x)) (consp acl2::x)))
Theorem:
(defthm sv::maybe-4veclist-fix-under-iff (iff (sv::maybe-4veclist-fix acl2::x) (consp acl2::x)))
Theorem:
(defthm sv::maybe-4veclist-fix-of-cons (equal (sv::maybe-4veclist-fix (cons sv::a acl2::x)) (cons (sv::maybe-4vec-fix sv::a) (sv::maybe-4veclist-fix acl2::x))))
Theorem:
(defthm sv::len-of-maybe-4veclist-fix (equal (len (sv::maybe-4veclist-fix acl2::x)) (len acl2::x)))
Theorem:
(defthm sv::maybe-4veclist-fix-of-append (equal (sv::maybe-4veclist-fix (append std::a std::b)) (append (sv::maybe-4veclist-fix std::a) (sv::maybe-4veclist-fix std::b))))
Theorem:
(defthm sv::maybe-4veclist-fix-of-repeat (equal (sv::maybe-4veclist-fix (repeat acl2::n acl2::x)) (repeat acl2::n (sv::maybe-4vec-fix acl2::x))))
Theorem:
(defthm sv::list-equiv-refines-maybe-4veclist-equiv (implies (list-equiv acl2::x acl2::y) (sv::maybe-4veclist-equiv acl2::x acl2::y)) :rule-classes :refinement)
Theorem:
(defthm sv::nth-of-maybe-4veclist-fix (equal (nth acl2::n (sv::maybe-4veclist-fix acl2::x)) (if (< (nfix acl2::n) (len acl2::x)) (sv::maybe-4vec-fix (nth acl2::n acl2::x)) nil)))
Theorem:
(defthm sv::maybe-4veclist-equiv-implies-maybe-4veclist-equiv-append-1 (implies (sv::maybe-4veclist-equiv acl2::x fty::x-equiv) (sv::maybe-4veclist-equiv (append acl2::x acl2::y) (append fty::x-equiv acl2::y))) :rule-classes (:congruence))
Theorem:
(defthm sv::maybe-4veclist-equiv-implies-maybe-4veclist-equiv-append-2 (implies (sv::maybe-4veclist-equiv acl2::y fty::y-equiv) (sv::maybe-4veclist-equiv (append acl2::x acl2::y) (append acl2::x fty::y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm maybe-4veclist-equiv-implies-maybe-4veclist-equiv-nthcdr-2 (implies (sv::maybe-4veclist-equiv acl2::l l-equiv) (sv::maybe-4veclist-equiv (nthcdr acl2::n acl2::l) (nthcdr acl2::n l-equiv))) :rule-classes (:congruence))
Theorem:
(defthm maybe-4veclist-equiv-implies-maybe-4veclist-equiv-take-2 (implies (sv::maybe-4veclist-equiv acl2::l l-equiv) (sv::maybe-4veclist-equiv (take acl2::n acl2::l) (take acl2::n l-equiv))) :rule-classes (:congruence))