Basic equivalence relation for modinstlist structures.
Function:
(defun modinstlist-equiv$inline (x y) (declare (xargs :guard (and (modinstlist-p x) (modinstlist-p y)))) (equal (modinstlist-fix x) (modinstlist-fix y)))
Theorem:
(defthm modinstlist-equiv-is-an-equivalence (and (booleanp (modinstlist-equiv x y)) (modinstlist-equiv x x) (implies (modinstlist-equiv x y) (modinstlist-equiv y x)) (implies (and (modinstlist-equiv x y) (modinstlist-equiv y z)) (modinstlist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm modinstlist-equiv-implies-equal-modinstlist-fix-1 (implies (modinstlist-equiv x x-equiv) (equal (modinstlist-fix x) (modinstlist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm modinstlist-fix-under-modinstlist-equiv (modinstlist-equiv (modinstlist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-modinstlist-fix-1-forward-to-modinstlist-equiv (implies (equal (modinstlist-fix x) y) (modinstlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-modinstlist-fix-2-forward-to-modinstlist-equiv (implies (equal x (modinstlist-fix y)) (modinstlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm modinstlist-equiv-of-modinstlist-fix-1-forward (implies (modinstlist-equiv (modinstlist-fix x) y) (modinstlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm modinstlist-equiv-of-modinstlist-fix-2-forward (implies (modinstlist-equiv x (modinstlist-fix y)) (modinstlist-equiv x y)) :rule-classes :forward-chaining)