Basic equivalence relation for module structures.
Function:
(defun module-equiv$inline (x y) (declare (xargs :guard (and (module-p x) (module-p y)))) (equal (module-fix x) (module-fix y)))
Theorem:
(defthm module-equiv-is-an-equivalence (and (booleanp (module-equiv x y)) (module-equiv x x) (implies (module-equiv x y) (module-equiv y x)) (implies (and (module-equiv x y) (module-equiv y z)) (module-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm module-equiv-implies-equal-module-fix-1 (implies (module-equiv x x-equiv) (equal (module-fix x) (module-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm module-fix-under-module-equiv (module-equiv (module-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-module-fix-1-forward-to-module-equiv (implies (equal (module-fix x) y) (module-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-module-fix-2-forward-to-module-equiv (implies (equal x (module-fix y)) (module-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm module-equiv-of-module-fix-1-forward (implies (module-equiv (module-fix x) y) (module-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm module-equiv-of-module-fix-2-forward (implies (module-equiv x (module-fix y)) (module-equiv x y)) :rule-classes :forward-chaining)