(svar-addr-fix x) → x
Function:
(defun svar-addr-fix (x) (declare (xargs :guard (svar-p x))) (declare (xargs :guard (svar-addr-p x))) (let ((__function__ 'svar-addr-fix)) (declare (ignorable __function__)) (mbe :logic (if (svar-addr-p x) (svar-fix x) (change-svar x :name (svar->address x) :bits (logand -256 (svar->bits x)))) :exec x)))
Theorem:
(defthm return-type-of-svar-addr-fix (b* ((x (svar-addr-fix x))) (and (svar-p x) (svar-addr-p x))) :rule-classes :rewrite)
Theorem:
(defthm svar-addr-fix-when-svar-addr-p (implies (svar-addr-p x) (equal (svar-addr-fix x) (svar-fix x))))
Theorem:
(defthm svar->address-of-svar-addr-fix (equal (svar->address (svar-addr-fix x)) (svar->address x)))
Theorem:
(defthm svar-addr-fix-of-svar-fix-x (equal (svar-addr-fix (svar-fix x)) (svar-addr-fix x)))
Theorem:
(defthm svar-addr-fix-svar-equiv-congruence-on-x (implies (svar-equiv x x-equiv) (equal (svar-addr-fix x) (svar-addr-fix x-equiv))) :rule-classes :congruence)