Recognizer for svar-alist.
(svar-alist-p x) → *
Function:
(defun svar-alist-p (x) (declare (xargs :guard t)) (let ((__function__ 'svar-alist-p)) (declare (ignorable __function__)) (if (atom x) t (and (consp (car x)) (svar-p (caar x)) (svar-alist-p (cdr x))))))
Theorem:
(defthm svar-alist-p-of-union-equal (equal (svar-alist-p (union-equal x y)) (and (svar-alist-p (list-fix x)) (svar-alist-p (double-rewrite y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-intersection-equal-2 (implies (svar-alist-p (double-rewrite y)) (svar-alist-p (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-intersection-equal-1 (implies (svar-alist-p (double-rewrite x)) (svar-alist-p (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-set-difference-equal (implies (svar-alist-p x) (svar-alist-p (set-difference-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-set-equiv-congruence (implies (set-equiv x y) (equal (svar-alist-p x) (svar-alist-p y))) :rule-classes :congruence)
Theorem:
(defthm svar-alist-p-when-subsetp-equal (and (implies (and (subsetp-equal x y) (svar-alist-p y)) (svar-alist-p x)) (implies (and (svar-alist-p y) (subsetp-equal x y)) (svar-alist-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-rcons (iff (svar-alist-p (acl2::rcons acl2::a x)) (and (and (consp acl2::a) (svar-p (car acl2::a))) (svar-alist-p (list-fix x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-repeat (iff (svar-alist-p (repeat acl2::n x)) (or (and (consp x) (svar-p (car x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-rev (equal (svar-alist-p (rev x)) (svar-alist-p (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-list-fix (equal (svar-alist-p (list-fix x)) (svar-alist-p x)) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-append (equal (svar-alist-p (append acl2::a acl2::b)) (and (svar-alist-p acl2::a) (svar-alist-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-when-not-consp (implies (not (consp x)) (svar-alist-p x)) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-cdr-when-svar-alist-p (implies (svar-alist-p (double-rewrite x)) (svar-alist-p (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-cons (equal (svar-alist-p (cons acl2::a x)) (and (and (consp acl2::a) (svar-p (car acl2::a))) (svar-alist-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-fast-alist-clean (implies (svar-alist-p x) (svar-alist-p (fast-alist-clean x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-hons-shrink-alist (implies (and (svar-alist-p x) (svar-alist-p y)) (svar-alist-p (hons-shrink-alist x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-alist-p-of-hons-acons (equal (svar-alist-p (hons-acons acl2::a acl2::n x)) (and (svar-p acl2::a) t (svar-alist-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-p-of-caar-when-svar-alist-p (implies (svar-alist-p x) (iff (svar-p (caar x)) (or (consp x) (svar-p nil)))) :rule-classes ((:rewrite)))