• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • ACL2
    • Macro-libraries
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
            • Svar
              • Svar-p
              • Svar-fix
              • Make-svar
              • Svar-equiv
              • Svar->props
              • Svar->delay
              • Svar->bits
              • Change-svar
              • Svarlist
                • Svarlist-p
                • Svarlist-fix
                • Svarlist-equiv
                • Svar->name
                • Svar-map
                • Svar-alist
              • Least-fixpoint
              • Svex-p
              • Svex-select
              • Svex-alist
              • Svex-equiv
              • Svexlist
              • Svex-call
              • Fnsym
              • Svex-quote
              • Svex-var
              • Svcall-rw
              • Svcall
              • Svex-kind
              • Svcall*
              • Svex-fix
              • Svex-count
              • Svex-1z
              • Svex-1x
              • Svex-z
              • Svex-x
            • Bit-blasting
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svarlist

    Svarlist-equiv

    Basic equivalence relation for svarlist structures.

    Definitions and Theorems

    Function: svarlist-equiv$inline

    (defun svarlist-equiv$inline (x y)
      (declare (xargs :guard (and (svarlist-p x) (svarlist-p y))))
      (equal (svarlist-fix x)
             (svarlist-fix y)))

    Theorem: svarlist-equiv-is-an-equivalence

    (defthm svarlist-equiv-is-an-equivalence
      (and (booleanp (svarlist-equiv x y))
           (svarlist-equiv x x)
           (implies (svarlist-equiv x y)
                    (svarlist-equiv y x))
           (implies (and (svarlist-equiv x y)
                         (svarlist-equiv y z))
                    (svarlist-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: svarlist-equiv-implies-equal-svarlist-fix-1

    (defthm svarlist-equiv-implies-equal-svarlist-fix-1
      (implies (svarlist-equiv x x-equiv)
               (equal (svarlist-fix x)
                      (svarlist-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: svarlist-fix-under-svarlist-equiv

    (defthm svarlist-fix-under-svarlist-equiv
      (svarlist-equiv (svarlist-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-svarlist-fix-1-forward-to-svarlist-equiv

    (defthm equal-of-svarlist-fix-1-forward-to-svarlist-equiv
      (implies (equal (svarlist-fix x) y)
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-svarlist-fix-2-forward-to-svarlist-equiv

    (defthm equal-of-svarlist-fix-2-forward-to-svarlist-equiv
      (implies (equal x (svarlist-fix y))
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: svarlist-equiv-of-svarlist-fix-1-forward

    (defthm svarlist-equiv-of-svarlist-fix-1-forward
      (implies (svarlist-equiv (svarlist-fix x) y)
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: svarlist-equiv-of-svarlist-fix-2-forward

    (defthm svarlist-equiv-of-svarlist-fix-2-forward
      (implies (svarlist-equiv x (svarlist-fix y))
               (svarlist-equiv x y))
      :rule-classes :forward-chaining)