Recognizer for svex-a4vec-env.
(svex-a4vec-env-p x) → *
Function:
(defun svex-a4vec-env-p (x) (declare (xargs :guard t)) (let ((__function__ 'svex-a4vec-env-p)) (declare (ignorable __function__)) (if (atom x) t (and (consp (car x)) (svar-p (caar x)) (a4vec-p (cdar x)) (svex-a4vec-env-p (cdr x))))))
Theorem:
(defthm svex-a4vec-env-p-of-revappend (equal (svex-a4vec-env-p (revappend x y)) (and (svex-a4vec-env-p (list-fix x)) (svex-a4vec-env-p y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-remove (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (remove acl2::a x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-last (implies (svex-a4vec-env-p (double-rewrite x)) (svex-a4vec-env-p (last x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-nthcdr (implies (svex-a4vec-env-p (double-rewrite x)) (svex-a4vec-env-p (nthcdr acl2::n x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-butlast (implies (svex-a4vec-env-p (double-rewrite x)) (svex-a4vec-env-p (butlast x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-update-nth (implies (svex-a4vec-env-p (double-rewrite x)) (iff (svex-a4vec-env-p (update-nth acl2::n y x)) (and (and (consp y) (svar-p (car y)) (a4vec-p (cdr y))) (or (<= (nfix acl2::n) (len x)) (and (consp nil) (svar-p (car nil)) (a4vec-p (cdr nil))))))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-repeat (iff (svex-a4vec-env-p (repeat acl2::n x)) (or (and (consp x) (svar-p (car x)) (a4vec-p (cdr x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-take (implies (svex-a4vec-env-p (double-rewrite x)) (iff (svex-a4vec-env-p (take acl2::n x)) (or (and (consp nil) (svar-p (car nil)) (a4vec-p (cdr nil))) (<= (nfix acl2::n) (len x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-union-equal (equal (svex-a4vec-env-p (union-equal x y)) (and (svex-a4vec-env-p (list-fix x)) (svex-a4vec-env-p (double-rewrite y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-intersection-equal-2 (implies (svex-a4vec-env-p (double-rewrite y)) (svex-a4vec-env-p (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-intersection-equal-1 (implies (svex-a4vec-env-p (double-rewrite x)) (svex-a4vec-env-p (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-set-difference-equal (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (set-difference-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-set-equiv-congruence (implies (set-equiv x y) (equal (svex-a4vec-env-p x) (svex-a4vec-env-p y))) :rule-classes :congruence)
Theorem:
(defthm svex-a4vec-env-p-when-subsetp-equal (and (implies (and (subsetp-equal x y) (svex-a4vec-env-p y)) (svex-a4vec-env-p x)) (implies (and (svex-a4vec-env-p y) (subsetp-equal x y)) (svex-a4vec-env-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-rcons (iff (svex-a4vec-env-p (acl2::rcons acl2::a x)) (and (and (consp acl2::a) (svar-p (car acl2::a)) (a4vec-p (cdr acl2::a))) (svex-a4vec-env-p (list-fix x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-rev (equal (svex-a4vec-env-p (rev x)) (svex-a4vec-env-p (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-duplicated-members (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (duplicated-members x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-difference (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (difference x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-intersect-2 (implies (svex-a4vec-env-p y) (svex-a4vec-env-p (intersect x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-intersect-1 (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (intersect x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-union (iff (svex-a4vec-env-p (union x y)) (and (svex-a4vec-env-p (sfix x)) (svex-a4vec-env-p (sfix y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-mergesort (iff (svex-a4vec-env-p (mergesort x)) (svex-a4vec-env-p (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-delete (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (delete acl2::k x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-insert (iff (svex-a4vec-env-p (insert acl2::a x)) (and (svex-a4vec-env-p (sfix x)) (and (consp acl2::a) (svar-p (car acl2::a)) (a4vec-p (cdr acl2::a))))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-sfix (iff (svex-a4vec-env-p (sfix x)) (or (svex-a4vec-env-p x) (not (setp x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-list-fix (equal (svex-a4vec-env-p (list-fix x)) (svex-a4vec-env-p x)) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-append (equal (svex-a4vec-env-p (append acl2::a acl2::b)) (and (svex-a4vec-env-p acl2::a) (svex-a4vec-env-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-when-not-consp (implies (not (consp x)) (svex-a4vec-env-p x)) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-cdr-when-svex-a4vec-env-p (implies (svex-a4vec-env-p (double-rewrite x)) (svex-a4vec-env-p (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-cons (equal (svex-a4vec-env-p (cons acl2::a x)) (and (and (consp acl2::a) (svar-p (car acl2::a)) (a4vec-p (cdr acl2::a))) (svex-a4vec-env-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-fast-alist-clean (implies (svex-a4vec-env-p x) (svex-a4vec-env-p (fast-alist-clean x))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-hons-shrink-alist (implies (and (svex-a4vec-env-p x) (svex-a4vec-env-p y)) (svex-a4vec-env-p (hons-shrink-alist x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm svex-a4vec-env-p-of-hons-acons (equal (svex-a4vec-env-p (hons-acons acl2::a acl2::n x)) (and (svar-p acl2::a) (a4vec-p acl2::n) (svex-a4vec-env-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm a4vec-p-of-cdr-of-hons-assoc-equal-when-svex-a4vec-env-p (implies (svex-a4vec-env-p x) (iff (a4vec-p (cdr (hons-assoc-equal acl2::k x))) (or (hons-assoc-equal acl2::k x) (a4vec-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm a4vec-p-of-cdar-when-svex-a4vec-env-p (implies (svex-a4vec-env-p x) (iff (a4vec-p (cdar x)) (or (consp x) (a4vec-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-p-of-caar-when-svex-a4vec-env-p (implies (svex-a4vec-env-p x) (iff (svar-p (caar x)) (or (consp x) (svar-p nil)))) :rule-classes ((:rewrite)))