Like alist-vals but with proper fty-discipline for svex-alists.
(svex-alist-vals x) → vals
Function:
(defun svex-alist-vals (x) (declare (xargs :guard (svex-alist-p x))) (let ((__function__ 'svex-alist-vals)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (if (mbt (and (consp (car x)) (svar-p (caar x)))) (cons (mbe :logic (svex-fix (cdar x)) :exec (cdar x)) (svex-alist-vals (cdr x))) (svex-alist-vals (cdr x)))) :exec (strip-cdrs x))))
Theorem:
(defthm svexlist-p-of-svex-alist-vals (b* ((vals (svex-alist-vals x))) (svexlist-p vals)) :rule-classes :rewrite)
Theorem:
(defthm svex-alist-vals-of-svex-alist-fix-x (equal (svex-alist-vals (svex-alist-fix x)) (svex-alist-vals x)))
Theorem:
(defthm svex-alist-vals-svex-alist-equiv-congruence-on-x (implies (svex-alist-equiv x x-equiv) (equal (svex-alist-vals x) (svex-alist-vals x-equiv))) :rule-classes :congruence)
Theorem:
(defthm member-svex-alist-vals-when-svex-lookup (implies (svex-lookup k x) (member (svex-lookup k x) (svex-alist-vals x))))
Theorem:
(defthm svex-alist-vals-of-svex-acons (equal (svex-alist-vals (svex-acons k v x)) (cons (svex-fix v) (svex-alist-vals x))))
Theorem:
(defthm len-of-svex-alist-vals (equal (len (svex-alist-vals x)) (len (svex-alist-keys x))))
Theorem:
(defthm svex-alist-vals-of-pairlis$ (implies (and (equal (len x) (len y)) (svarlist-p x)) (equal (svex-alist-vals (pairlis$ x y)) (svexlist-fix y))))