Basic equivalence relation for svex-alistlist structures.
Function:
(defun svex-alistlist-equiv$inline (x y) (declare (xargs :guard (and (svex-alistlist-p x) (svex-alistlist-p y)))) (equal (svex-alistlist-fix x) (svex-alistlist-fix y)))
Theorem:
(defthm svex-alistlist-equiv-is-an-equivalence (and (booleanp (svex-alistlist-equiv x y)) (svex-alistlist-equiv x x) (implies (svex-alistlist-equiv x y) (svex-alistlist-equiv y x)) (implies (and (svex-alistlist-equiv x y) (svex-alistlist-equiv y z)) (svex-alistlist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svex-alistlist-equiv-implies-equal-svex-alistlist-fix-1 (implies (svex-alistlist-equiv x x-equiv) (equal (svex-alistlist-fix x) (svex-alistlist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svex-alistlist-fix-under-svex-alistlist-equiv (svex-alistlist-equiv (svex-alistlist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svex-alistlist-fix-1-forward-to-svex-alistlist-equiv (implies (equal (svex-alistlist-fix x) y) (svex-alistlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svex-alistlist-fix-2-forward-to-svex-alistlist-equiv (implies (equal x (svex-alistlist-fix y)) (svex-alistlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svex-alistlist-equiv-of-svex-alistlist-fix-1-forward (implies (svex-alistlist-equiv (svex-alistlist-fix x) y) (svex-alistlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svex-alistlist-equiv-of-svex-alistlist-fix-2-forward (implies (svex-alistlist-equiv x (svex-alistlist-fix y)) (svex-alistlist-equiv x y)) :rule-classes :forward-chaining)