Describe a level of simplification to use when creating SVEX function call objects
(svex-simpconfig-p x) → *
The possible values for this object:
Function:
(defun svex-simpconfig-p (x) (declare (xargs :guard t)) (let ((__function__ 'svex-simpconfig-p)) (declare (ignorable __function__)) (or (natp x) (eq x t) (eq x nil))))
Function:
(defun svex-simpconfig-fix! (x) (declare (xargs :guard t)) (let ((__function__ 'svex-simpconfig-fix!)) (declare (ignorable __function__)) (if (or (natp x) (eq x t)) x nil)))
Function:
(defun svex-simpconfig-fix (x) (declare (xargs :guard (svex-simpconfig-p x))) (let ((__function__ 'svex-simpconfig-fix)) (declare (ignorable __function__)) (mbe :logic (svex-simpconfig-fix! x) :exec x)))
Theorem:
(defthm svex-simpconfig-p-of-svex-simpconfig-fix (b* ((new-x (svex-simpconfig-fix x))) (svex-simpconfig-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm svex-simpconfig-fix-when-svex-simpconfig-p (b* ((?new-x (svex-simpconfig-fix x))) (implies (svex-simpconfig-p x) (equal new-x x))))
Function:
(defun svex-simpconfig-equiv$inline (x y) (declare (xargs :guard (and (svex-simpconfig-p x) (svex-simpconfig-p y)))) (equal (svex-simpconfig-fix x) (svex-simpconfig-fix y)))
Theorem:
(defthm svex-simpconfig-equiv-is-an-equivalence (and (booleanp (svex-simpconfig-equiv x y)) (svex-simpconfig-equiv x x) (implies (svex-simpconfig-equiv x y) (svex-simpconfig-equiv y x)) (implies (and (svex-simpconfig-equiv x y) (svex-simpconfig-equiv y z)) (svex-simpconfig-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svex-simpconfig-equiv-implies-equal-svex-simpconfig-fix-1 (implies (svex-simpconfig-equiv x x-equiv) (equal (svex-simpconfig-fix x) (svex-simpconfig-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svex-simpconfig-fix-under-svex-simpconfig-equiv (svex-simpconfig-equiv (svex-simpconfig-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm svex-simpconfig-fix!-is-fix (equal (svex-simpconfig-fix! x) (svex-simpconfig-fix x)))