Theorem:
(defthm svex-<<=-necc (implies (svex-<<= x y) (4vec-<<= (svex-eval x env) (svex-eval y env))))
Theorem:
(defthm svex-eval-equiv-implies-equal-svex-<<=-1 (implies (svex-eval-equiv x x-equiv) (equal (svex-<<= x y) (svex-<<= x-equiv y))) :rule-classes (:congruence))
Theorem:
(defthm svex-eval-equiv-implies-equal-svex-<<=-2 (implies (svex-eval-equiv y y-equiv) (equal (svex-<<= x y) (svex-<<= x y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svex-<<=-x (svex-<<= (4vec-x) x))
Theorem:
(defthm svex-<<=-refl (svex-<<= x x))
Theorem:
(defthm svex-<<=-transitive-1 (implies (and (svex-<<= x y) (svex-<<= y z)) (svex-<<= x z)))
Theorem:
(defthm svex-<<=-transitive-2 (implies (and (svex-<<= y z) (svex-<<= x y)) (svex-<<= x z)))
Theorem:
(defthm svex-<<=-asymm (implies (svex-<<= x y) (iff (svex-<<= y x) (svex-eval-equiv y x))))