(svtv-entrylist-fix x) is a usual fty list fixing function.
(svtv-entrylist-fix x) → fty::newx
In the logic, we apply svtv-entry-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.
Function:
(defun svtv-entrylist-fix$inline (x) (declare (xargs :guard (svtv-entrylist-p x))) (let ((__function__ 'svtv-entrylist-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (cons (svtv-entry-fix (car x)) (svtv-entrylist-fix (cdr x)))) :exec x)))
Theorem:
(defthm svtv-entrylist-p-of-svtv-entrylist-fix (b* ((fty::newx (svtv-entrylist-fix$inline x))) (svtv-entrylist-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm svtv-entrylist-fix-when-svtv-entrylist-p (implies (svtv-entrylist-p x) (equal (svtv-entrylist-fix x) x)))
Function:
(defun svtv-entrylist-equiv$inline (x y) (declare (xargs :guard (and (svtv-entrylist-p x) (svtv-entrylist-p y)))) (equal (svtv-entrylist-fix x) (svtv-entrylist-fix y)))
Theorem:
(defthm svtv-entrylist-equiv-is-an-equivalence (and (booleanp (svtv-entrylist-equiv x y)) (svtv-entrylist-equiv x x) (implies (svtv-entrylist-equiv x y) (svtv-entrylist-equiv y x)) (implies (and (svtv-entrylist-equiv x y) (svtv-entrylist-equiv y z)) (svtv-entrylist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svtv-entrylist-equiv-implies-equal-svtv-entrylist-fix-1 (implies (svtv-entrylist-equiv x x-equiv) (equal (svtv-entrylist-fix x) (svtv-entrylist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-entrylist-fix-under-svtv-entrylist-equiv (svtv-entrylist-equiv (svtv-entrylist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svtv-entrylist-fix-1-forward-to-svtv-entrylist-equiv (implies (equal (svtv-entrylist-fix x) y) (svtv-entrylist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svtv-entrylist-fix-2-forward-to-svtv-entrylist-equiv (implies (equal x (svtv-entrylist-fix y)) (svtv-entrylist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-entrylist-equiv-of-svtv-entrylist-fix-1-forward (implies (svtv-entrylist-equiv (svtv-entrylist-fix x) y) (svtv-entrylist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-entrylist-equiv-of-svtv-entrylist-fix-2-forward (implies (svtv-entrylist-equiv x (svtv-entrylist-fix y)) (svtv-entrylist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm car-of-svtv-entrylist-fix-x-under-svtv-entry-equiv (svtv-entry-equiv (car (svtv-entrylist-fix x)) (car x)))
Theorem:
(defthm car-svtv-entrylist-equiv-congruence-on-x-under-svtv-entry-equiv (implies (svtv-entrylist-equiv x x-equiv) (svtv-entry-equiv (car x) (car x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cdr-of-svtv-entrylist-fix-x-under-svtv-entrylist-equiv (svtv-entrylist-equiv (cdr (svtv-entrylist-fix x)) (cdr x)))
Theorem:
(defthm cdr-svtv-entrylist-equiv-congruence-on-x-under-svtv-entrylist-equiv (implies (svtv-entrylist-equiv x x-equiv) (svtv-entrylist-equiv (cdr x) (cdr x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cons-of-svtv-entry-fix-x-under-svtv-entrylist-equiv (svtv-entrylist-equiv (cons (svtv-entry-fix x) y) (cons x y)))
Theorem:
(defthm cons-svtv-entry-equiv-congruence-on-x-under-svtv-entrylist-equiv (implies (svtv-entry-equiv x x-equiv) (svtv-entrylist-equiv (cons x y) (cons x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm cons-of-svtv-entrylist-fix-y-under-svtv-entrylist-equiv (svtv-entrylist-equiv (cons x (svtv-entrylist-fix y)) (cons x y)))
Theorem:
(defthm cons-svtv-entrylist-equiv-congruence-on-y-under-svtv-entrylist-equiv (implies (svtv-entrylist-equiv y y-equiv) (svtv-entrylist-equiv (cons x y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-svtv-entrylist-fix (equal (consp (svtv-entrylist-fix x)) (consp x)))
Theorem:
(defthm svtv-entrylist-fix-under-iff (iff (svtv-entrylist-fix x) (consp x)))
Theorem:
(defthm svtv-entrylist-fix-of-cons (equal (svtv-entrylist-fix (cons a x)) (cons (svtv-entry-fix a) (svtv-entrylist-fix x))))
Theorem:
(defthm len-of-svtv-entrylist-fix (equal (len (svtv-entrylist-fix x)) (len x)))
Theorem:
(defthm svtv-entrylist-fix-of-append (equal (svtv-entrylist-fix (append std::a std::b)) (append (svtv-entrylist-fix std::a) (svtv-entrylist-fix std::b))))
Theorem:
(defthm svtv-entrylist-fix-of-repeat (equal (svtv-entrylist-fix (repeat acl2::n x)) (repeat acl2::n (svtv-entry-fix x))))
Theorem:
(defthm list-equiv-refines-svtv-entrylist-equiv (implies (list-equiv x y) (svtv-entrylist-equiv x y)) :rule-classes :refinement)
Theorem:
(defthm nth-of-svtv-entrylist-fix (equal (nth acl2::n (svtv-entrylist-fix x)) (if (< (nfix acl2::n) (len x)) (svtv-entry-fix (nth acl2::n x)) nil)))
Theorem:
(defthm svtv-entrylist-equiv-implies-svtv-entrylist-equiv-append-1 (implies (svtv-entrylist-equiv x fty::x-equiv) (svtv-entrylist-equiv (append x y) (append fty::x-equiv y))) :rule-classes (:congruence))
Theorem:
(defthm svtv-entrylist-equiv-implies-svtv-entrylist-equiv-append-2 (implies (svtv-entrylist-equiv y fty::y-equiv) (svtv-entrylist-equiv (append x y) (append x fty::y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-entrylist-equiv-implies-svtv-entrylist-equiv-nthcdr-2 (implies (svtv-entrylist-equiv acl2::l l-equiv) (svtv-entrylist-equiv (nthcdr acl2::n acl2::l) (nthcdr acl2::n l-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-entrylist-equiv-implies-svtv-entrylist-equiv-take-2 (implies (svtv-entrylist-equiv acl2::l l-equiv) (svtv-entrylist-equiv (take acl2::n acl2::l) (take acl2::n l-equiv))) :rule-classes (:congruence))