(svtv-outentry-p x) → *
Function:
(defun svtv-outentry-p (x) (declare (xargs :guard t)) (let ((__function__ 'svtv-outentry-p)) (declare (ignorable __function__)) (and (symbolp x) (not (booleanp x)) (not (keywordp x)))))
Function:
(defun svtv-outentry-fix (x) (declare (xargs :guard (svtv-outentry-p x))) (let ((__function__ 'svtv-outentry-fix)) (declare (ignorable __function__)) (mbe :logic (if (svtv-outentry-p x) x '_) :exec x)))
Theorem:
(defthm svtv-outentry-p-of-svtv-outentry-fix (b* ((xx (svtv-outentry-fix x))) (svtv-outentry-p xx)) :rule-classes :rewrite)
Theorem:
(defthm svtv-outentry-fix-of-svtv-outentry-p (implies (svtv-outentry-p x) (equal (svtv-outentry-fix x) x)))
Function:
(defun svtv-outentry-equiv$inline (x y) (declare (xargs :guard (and (svtv-outentry-p x) (svtv-outentry-p y)))) (equal (svtv-outentry-fix x) (svtv-outentry-fix y)))
Theorem:
(defthm svtv-outentry-equiv-is-an-equivalence (and (booleanp (svtv-outentry-equiv x y)) (svtv-outentry-equiv x x) (implies (svtv-outentry-equiv x y) (svtv-outentry-equiv y x)) (implies (and (svtv-outentry-equiv x y) (svtv-outentry-equiv y z)) (svtv-outentry-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svtv-outentry-equiv-implies-equal-svtv-outentry-fix-1 (implies (svtv-outentry-equiv x x-equiv) (equal (svtv-outentry-fix x) (svtv-outentry-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-outentry-fix-under-svtv-outentry-equiv (svtv-outentry-equiv (svtv-outentry-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svtv-outentry-fix-1-forward-to-svtv-outentry-equiv (implies (equal (svtv-outentry-fix x) y) (svtv-outentry-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svtv-outentry-fix-2-forward-to-svtv-outentry-equiv (implies (equal x (svtv-outentry-fix y)) (svtv-outentry-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-outentry-equiv-of-svtv-outentry-fix-1-forward (implies (svtv-outentry-equiv (svtv-outentry-fix x) y) (svtv-outentry-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-outentry-equiv-of-svtv-outentry-fix-2-forward (implies (svtv-outentry-equiv x (svtv-outentry-fix y)) (svtv-outentry-equiv x y)) :rule-classes :forward-chaining)