Basic equivalence relation for var-decl-map structures.
Function:
(defun var-decl-map-equiv$inline (x y) (declare (xargs :guard (and (var-decl-map-p x) (var-decl-map-p y)))) (equal (var-decl-map-fix x) (var-decl-map-fix y)))
Theorem:
(defthm var-decl-map-equiv-is-an-equivalence (and (booleanp (var-decl-map-equiv x y)) (var-decl-map-equiv x x) (implies (var-decl-map-equiv x y) (var-decl-map-equiv y x)) (implies (and (var-decl-map-equiv x y) (var-decl-map-equiv y z)) (var-decl-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm var-decl-map-equiv-implies-equal-var-decl-map-fix-1 (implies (var-decl-map-equiv x x-equiv) (equal (var-decl-map-fix x) (var-decl-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm var-decl-map-fix-under-var-decl-map-equiv (var-decl-map-equiv (var-decl-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-var-decl-map-fix-1-forward-to-var-decl-map-equiv (implies (equal (var-decl-map-fix x) y) (var-decl-map-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-var-decl-map-fix-2-forward-to-var-decl-map-equiv (implies (equal x (var-decl-map-fix y)) (var-decl-map-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm var-decl-map-equiv-of-var-decl-map-fix-1-forward (implies (var-decl-map-equiv (var-decl-map-fix x) y) (var-decl-map-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm var-decl-map-equiv-of-var-decl-map-fix-2-forward (implies (var-decl-map-equiv x (var-decl-map-fix y)) (var-decl-map-equiv x y)) :rule-classes :forward-chaining)