Basic equivalence relation for function-definition structures.
Function:
(defun function-definition-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (function-definitionp acl2::x) (function-definitionp acl2::y)))) (equal (function-definition-fix acl2::x) (function-definition-fix acl2::y)))
Theorem:
(defthm function-definition-equiv-is-an-equivalence (and (booleanp (function-definition-equiv x y)) (function-definition-equiv x x) (implies (function-definition-equiv x y) (function-definition-equiv y x)) (implies (and (function-definition-equiv x y) (function-definition-equiv y z)) (function-definition-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm function-definition-equiv-implies-equal-function-definition-fix-1 (implies (function-definition-equiv acl2::x x-equiv) (equal (function-definition-fix acl2::x) (function-definition-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm function-definition-fix-under-function-definition-equiv (function-definition-equiv (function-definition-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-function-definition-fix-1-forward-to-function-definition-equiv (implies (equal (function-definition-fix acl2::x) acl2::y) (function-definition-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-function-definition-fix-2-forward-to-function-definition-equiv (implies (equal acl2::x (function-definition-fix acl2::y)) (function-definition-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm function-definition-equiv-of-function-definition-fix-1-forward (implies (function-definition-equiv (function-definition-fix acl2::x) acl2::y) (function-definition-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm function-definition-equiv-of-function-definition-fix-2-forward (implies (function-definition-equiv acl2::x (function-definition-fix acl2::y)) (function-definition-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)