Basic equivalence relation for literal structures.
Function:
(defun literal-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (literalp acl2::x) (literalp acl2::y)))) (equal (literal-fix acl2::x) (literal-fix acl2::y)))
Theorem:
(defthm literal-equiv-is-an-equivalence (and (booleanp (literal-equiv x y)) (literal-equiv x x) (implies (literal-equiv x y) (literal-equiv y x)) (implies (and (literal-equiv x y) (literal-equiv y z)) (literal-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm literal-equiv-implies-equal-literal-fix-1 (implies (literal-equiv acl2::x x-equiv) (equal (literal-fix acl2::x) (literal-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm literal-fix-under-literal-equiv (literal-equiv (literal-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-literal-fix-1-forward-to-literal-equiv (implies (equal (literal-fix acl2::x) acl2::y) (literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-literal-fix-2-forward-to-literal-equiv (implies (equal acl2::x (literal-fix acl2::y)) (literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm literal-equiv-of-literal-fix-1-forward (implies (literal-equiv (literal-fix acl2::x) acl2::y) (literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm literal-equiv-of-literal-fix-2-forward (implies (literal-equiv acl2::x (literal-fix acl2::y)) (literal-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)