Fixing function for transform-argument-value structures.
(transform-argument-value-fix x) → new-x
Function:
(defun transform-argument-value-fix$inline (x) (declare (xargs :guard (transform-argument-valuep x))) (let ((__function__ 'transform-argument-value-fix)) (declare (ignorable __function__)) (mbe :logic (case (transform-argument-value-kind x) (:identifier (b* ((name (identifier-fix (std::da-nth 0 (cdr x))))) (cons :identifier (list name)))) (:identifier-list (b* ((names (identifier-list-fix (std::da-nth 0 (cdr x))))) (cons :identifier-list (list names)))) (:term (b* ((get (expression-fix (std::da-nth 0 (cdr x))))) (cons :term (list get)))) (:bool (b* ((val (bool-fix (std::da-nth 0 (cdr x))))) (cons :bool (list val))))) :exec x)))
Theorem:
(defthm transform-argument-valuep-of-transform-argument-value-fix (b* ((new-x (transform-argument-value-fix$inline x))) (transform-argument-valuep new-x)) :rule-classes :rewrite)
Theorem:
(defthm transform-argument-value-fix-when-transform-argument-valuep (implies (transform-argument-valuep x) (equal (transform-argument-value-fix x) x)))
Function:
(defun transform-argument-value-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (transform-argument-valuep acl2::x) (transform-argument-valuep acl2::y)))) (equal (transform-argument-value-fix acl2::x) (transform-argument-value-fix acl2::y)))
Theorem:
(defthm transform-argument-value-equiv-is-an-equivalence (and (booleanp (transform-argument-value-equiv x y)) (transform-argument-value-equiv x x) (implies (transform-argument-value-equiv x y) (transform-argument-value-equiv y x)) (implies (and (transform-argument-value-equiv x y) (transform-argument-value-equiv y z)) (transform-argument-value-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm transform-argument-value-equiv-implies-equal-transform-argument-value-fix-1 (implies (transform-argument-value-equiv acl2::x x-equiv) (equal (transform-argument-value-fix acl2::x) (transform-argument-value-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm transform-argument-value-fix-under-transform-argument-value-equiv (transform-argument-value-equiv (transform-argument-value-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-transform-argument-value-fix-1-forward-to-transform-argument-value-equiv (implies (equal (transform-argument-value-fix acl2::x) acl2::y) (transform-argument-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-transform-argument-value-fix-2-forward-to-transform-argument-value-equiv (implies (equal acl2::x (transform-argument-value-fix acl2::y)) (transform-argument-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transform-argument-value-equiv-of-transform-argument-value-fix-1-forward (implies (transform-argument-value-equiv (transform-argument-value-fix acl2::x) acl2::y) (transform-argument-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transform-argument-value-equiv-of-transform-argument-value-fix-2-forward (implies (transform-argument-value-equiv acl2::x (transform-argument-value-fix acl2::y)) (transform-argument-value-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm transform-argument-value-kind$inline-of-transform-argument-value-fix-x (equal (transform-argument-value-kind$inline (transform-argument-value-fix x)) (transform-argument-value-kind$inline x)))
Theorem:
(defthm transform-argument-value-kind$inline-transform-argument-value-equiv-congruence-on-x (implies (transform-argument-value-equiv x x-equiv) (equal (transform-argument-value-kind$inline x) (transform-argument-value-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-transform-argument-value-fix (consp (transform-argument-value-fix x)) :rule-classes :type-prescription)